Study

Restoration of wet fen meadows by topsoil removal: vegetation development and germination biology of fen species

  • Published source details Patzelt A., Wild U. & Pfadenhauer J. (2001) Restoration of wet fen meadows by topsoil removal: vegetation development and germination biology of fen species. Restoration Ecology, 9, 127-136.

Actions

This study is summarised as evidence for the following.

Action Category

Remove upper layer of peat/soil (without planting)

Action Link
Peatland Conservation

Introduce seeds of peatland herbs

Action Link
Peatland Conservation

Restore or create traditional water meadows

Action Link
Farmland Conservation
  1. Remove upper layer of peat/soil (without planting)

    A study in 1991–1997 in a degraded fen meadow in Germany (Patzelt et al. 2001) reported that a plant community developed following topsoil removal, but its composition depended on the depth of soil removed. In plots with 40–60 cm of soil removed, the community contained wetland-characteristic herbs and tall rush species after six years. In plots with 20 cm of soil removed, species from drier grasslands were more abundant. All data were reported as a graphical analysis. The results were not tested for statistical significance. In February 1991, topsoil was removed from three 4,500 m2 plots in a fen meadow historically used for agriculture. A different depth of soil was removed from each plot: 20, 40 or 60 cm. None of these plots were sown with hay. From 1992 to 1997, vegetation cover was estimated annually in five 4 m2 quadrats/plot.

    (Summarised by: Nigel Taylor)

  2. Introduce seeds of peatland herbs

    A controlled, before-and-after study in 1991–1997 in a degraded fen meadow in Germany (Patzelt et al. 2001) reported that adding seed-rich hay, after removing topsoil, ensured that plots developed wetland-characteristic plant communities. Over six years, plots with hay added after removal of 20–40 cm of topsoil developed cover of fen-characteristic herbs, including sedge Carex spp. and purple moor grass Molinia caerulea. Plots with hay added after removal of 60 cm of topsoil developed cover of wetland-characteristic herbs (particularly rushes) in addition to fen-characteristic species. Plant communities in plots without added hay showed similar changes to those with hay when 40–60 cm of topsoil was removed, but developed cover of species from drier grasslands when 20 cm of topsoil was removed. All data were reported as a graphical analysis. The results were not tested for statistical significance. In February 1991, six 4,500 m2 plots in a historically farmed fen meadow were stripped of topsoil (to 20, 40 or 60 cm depth). Hay was cut from nearby fens and spread onto three of the plots (one stripped to each depth). From 1992 to 1997, vegetation cover was recorded annually in five 4 m2 quadrats/plot.

    (Summarised by: Nigel Taylor)

  3. Restore or create traditional water meadows

    A controlled study in 1992-1997 of wet fen meadows in southern Germany (Patzelt et al. 2001) found that topsoil removal and the introduction of target species aided meadow restoration. The removal of the nutrient-rich topsoil (to depths of 20 cm, 40 cm or 60 cm) and introduction of target species in hay cut from four fen meadows (layer 5-10 cm thick) resulted in successful establishment of 57 fen meadow plant species over six years, including 13 regional Red List species. The total cover of hay species from the donor areas reached up to 70% on plots where 20 cm of topsoil was removed, 30% when 40 cm was removed and 5% on the 60 cm removal plots. Plots without hay were established for each level of topsoil removal as controls for comparison. Monitoring of vegetation was carried out several times each year on permanent 4 m² plots.

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust