The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence

  • Published source details Holland J.M. (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103, 1-25.


This study is summarised as evidence for the following.

Action Category

Reduce tillage

Action Link
Bird Conservation

Reduce tillage

Action Link
Farmland Conservation
  1. Reduce tillage

    A review of the effects of conservation tillage relative to conventional ploughing (Holland 2004) found mixed effects for birds. One study showed no effect on five bird species in the context of organic farming. Another showed a higher number and diversity of birds on conservation tillage fields in Spain.


  2. Reduce tillage

    A 2004 review of the effects of conservation tillage relative to conventional ploughing (Holland 2004) mainly but not exclusively focussing on European studies, found that earthworms (Lumbricidae) almost always benefit from conservation tillage, but effects are more mixed for other organisms, including plants, birds and mammals. Four European experimental studies and two reviews showed that conservation tillage increased earthworm populations, particularly deep-burrowing species such as Lumbricus terrestris, with up to six times more earthworms under conservation tillage in the context of integrated farming (including: (Edwards & Lofty 1982), El Titi & Ipach 1989, Jordan et al. 2000, Kladivko 2001). Conservation tillage increased the diversity and abundance of springtails (Collembola) and mites (Acari) in four studies (Bertolani et al. 1989, El Titi & Ipach 1989, Vreeken-Buijs et al. 1994, Franchini & Rockett 1996). European studies on larger arthropods (beetles (Coleoptera) and spiders (Araneae)) were less consistent, with two studies showing increased numbers under conservation tillage ((Kendall et al. 1995), Purvis & Fadl 1996), one showing no effect (Huusela-Veistola 1996) and two showing both increases and decreases (Andersen 1999, Holland & Reynolds 2003). Different arthropod species were affected differently. Four UK studies showed an increase in grass species classed as weeds under conservation tillage (Theaker et al. 1995, Rew et al. 1996, Cavan et al. 1999, (McCloskey et al. 1998)). Other weed species have been shown to decline under conservation tillage in the context of integrated farming (one German study; Albrecht & Mattheis 1998) or remain stable (one UK study; (McCloskey et al. 1998)). For birds, one study showed no effect on five bird species in the context of organic farming (Saunders 2000). For mammals, one European study found that wood mice Apodemus sylvaticus were more abundant on conventionally ploughed fields than under conservation tillage in the context of organic and integrated farming (Higginbotham et al. 2000).

    Additional references:

    Bertolani R., Sabatini M.A. & Mola L. (1989) Effects of changes in tillage practices in Collembola populations. Pages 291-297 in: R. Dallai (ed.) Proceedings of the Third International Symposium on Apterygota, Siena.

    El Titi A. & Ipach A. (1989) Soil fauna in sustainable agriculture: results of an integrated farming system at Lautenbach, FRG. Agriculture, Ecosystems and Environment, 27, 561-572.

    Vreeken-Buijs M.J., Geurs M., de Ruiter P.C. & Brussaard L. (1994) Microarthropod biomass-c dynamics in the belowground food webs of two arable farming systems. Agriculture, Ecosystems and Environment, 51, 161-170.

    Theaker A.J., Boatman N.D. & Froud-Williams R.J. (1995) The effect of nitrogen fertiliser on the growth of Bromus sterilis in field boundary vegetation. Agriculture, Ecosystems and Environment, 53, 185-192.

    Franchini P. & Rockett C.L. (1996) Oribatid mites as “indicator” species for estimating the environmental impact of conventional and conservation tillage practices. Pedobiologia, 40, 217-225.

    Huusela-Veistola E. (1996) Effects of pesticide use and cultivation techniques on ground beetles (Col, Carabidae) in cereal fields. Annales Zoologici Fennici, 33, 197-205.

    Purvis G. & Fadl A. (1996) Emergence of Carabidae (Coleoptera) from pupation: a technique for studying the ‘productivity’ of carabid habitats. Annales Zoologici Fennici, 33, 215-223.

    Rew L.J., Froud-Williams R.J. & Boatman N.D. (1996) Dispersal of Bromus sterilis and Anthriscus sylvestris seed within arable field margins. Agriculture, Ecosystems and Environment, 59, 107-114.

    Albrecht H. & Mattheis A. (1998) The effects of organic and integrated farming on rare arable weeds on the Forschungsverbund Agrarokosysteme Munchen (FAM) research station in southern Bavaria. Biological Conservation, 86, 347-356.

    Andersen A. (1999) Plant protection in spring cereal production with reduced tillage. II. Pests and beneficial insects. Crop Protection, 18, 651-657.

    Cavan G., Cussans G. & Moss S.R. (1999) Modelling strategies to prevent resistance in black-grass (Alopecurus mysosuroides). Presented at Brighton Crop Protection Conference on Weeds, pp. 777–782.

    Higginbotham S., Leake A.R., Jordan V.W.L. & Ogilvy S.E. (2000) Environmental and ecological aspects of integrated, organic and conventional farming systems. Aspects of Applied Biology, 62, 15-20.

    Jordan V.W., Leake A.R. & Ogilvy S.E. (2000) Agronomic and environmental implications of soil management practices in integrated farming systems. Aspects of Applied Biology, 62, 61-66.

    Saunders H. (2000) Bird species as indicators to assess the impact of integrated crop management on the environment: a comparative study. Aspects of Applied Biology, 62, 47-54.

    Kladivko E.J. (2001) Tillage systems and soil ecology. Soil and Tillage Research, 61, 61-76.

    Holland J.M. & Reynolds C.J.M. (2003) The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia, 47, 181-191.


Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust