Study

Grassland conservation headlands: their impact on invertebrate assemblages in intensively managed grassland

  • Published source details Cole L.J., McCracken D.I., Baker L. & Parish D. (2007) Grassland conservation headlands: their impact on invertebrate assemblages in intensively managed grassland. Agriculture, Ecosystems & Environment, 122, 252-258.

Actions

This study is summarised as evidence for the following.

Action Category

Reduce grazing intensity on grassland (including seasonal removal of livestock)

Action Link
Farmland Conservation

Leave headlands in fields unsprayed (conservation headlands)

Action Link
Farmland Conservation
  1. Reduce grazing intensity on grassland (including seasonal removal of livestock)

    A replicated, controlled study of five grassland headlands on four intensively managed pastoral farms across Scotland (Cole et al. 2007) investigated the effect of conservation headlands, with no grazing from April-August and no fertilizer or pesticide applications on the abundance of ground active invertebrates and found that aphids/leafhoppers/planthoppers (Homoptera) and true bugs (Heteroptera) were more abundant in conservation headlands (no fertilizers, pesticides or grazing April-August) than conventional headlands and open fields. Aphids/leafhoppers/planthoppers had higher activity densities in conservation headlands (2.1) and field edges (conventional: 2.0, conservation: 1.9) than in conventional headlands (0.8) and open fields (0.6). Roundback slugs (Arionidae) showed the same pattern (2.3 conservation headlands, 2.1 conventional field edges, 2.4 conservation field edges, 0.7 conventional headlands, 0.3 open fields). True bugs were more abundant in conservation headlands (0.7) and field edges (1.1-1.2) than in open fields (0.2). Keelback slug (Limacidae) activity density was greater in both headlands (conventional: 1.9, conservation: 2.8) and field edges (2.3-2.7) than in open fields (1.1). Butterfly/moth (Lepidoptera) and sawfly (Symphyta) larvae showed a similar trend, whereas ground beetle (Carabidae) abundance did not differ with treatment (3.5-3.6). Ground beetle activity density was highest in open fields (4.0). One headland in each field was divided into two areas of 6 x 100 m, a conventional and conservation headland. In each field, invertebrates were sampled with five pitfall transects of nine traps in: the conservation headland, conservation field edge, conventional headland, conventional field edge and open field. Traps were set for 3–4 weeks in May-June and July-August 2000-2003.

     

  2. Leave headlands in fields unsprayed (conservation headlands)

    A replicated, controlled study in 2000-2003 of five grassland headlands on four intensively managed pastoral farms across Scotland (Cole et al. 2007) found that aphids/leafhoppers/planthoppers (Homoptera) and true bugs (Heteroptera) were more abundant in conservation headlands (no fertilizers, pesticides or grazing April-August) than conventional headlands and open fields. Homoptera had higher activity densities in conservation headlands (2.1) and field edges (conventional: 2.0, conservation: 1.9) than in conventional headlands (0.8) and open fields (0.6). Roundback slugs (Arionidae) showed the same pattern (2.3 conservation headlands, 2.1 conventional field edges, 2.4 conservation field edges, 0.7 conventional headlands, 0.3 open fields). True bugs were more abundant in conservation headlands (0.7) and field edges (1.1-1.2) than in open fields (0.2). Keelback slug (Limacidae) activity density was greater in both headlands (conventional: 1.9, conservation: 2.8) and field edges (2.3-2.7) than in open fields (1.1). Butterfly/moth (Lepidoptera) and sawfly (Symphyta) larvae showed a similar trend, whereas ground beetle (Carabidae) abundance did not differ with treatment (3.5-3.6). Ground beetle activity density was highest in open fields (4.0). One headland in each field was divided into two areas of 6 x 100 m, a conventional and conservation headland. In each field, invertebrates were sampled with five pitfall transects of nine traps in the conservation headland, conservation field edge, conventional headland, conventional field edge and open field. Traps were set for 3–4 weeks in May-June and July-August 2000-2003.

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust