Collected Evidence: Collected Evidence: Designate a Marine Protected Area and prohibit all types of fishing Thirty studies examined the effects of prohibiting all types of fishing in marine protected areas on subtidal benthic invertebrate populations. Four studies were systematic reviews of marine reserves (New Zealand and across the world). Two studies were in the North Atlantic Ocean (Bahamas). Five were in the South Pacific Ocean (New Zealand, French Polynesia). Three were in the North Pacific Ocean (USA). Seven were in the Tasman Sea (New Zealand, Australia). One was in the Florida Keys (USA). One was in the Coral Sea (Australia). Three were in the Mediterranean Sea (Italy, Spain). One was in the Bristol Channel and the Irish Sea (UK). Two were in the Firth of Clyde (UK). One was in the Foveaux Straight (New Zealand).   COMMUNITY RESPONSE (5 STUDIES) Overall community composition (3 studies): Three site comparison studies (one replicated and paired, one replicated, one paired) in the Mediterranean Sea, the Tasman Sea, and the Firth of Clyde found that marine protected areas that had been prohibiting all fishing for five to 16 years depending on the study, had similar combined algae, invertebrate and fish community composition, similar combined mollusc and echinoderm community composition, and similar overall community composition of large invertebrates but different composition of small sessile invertebrates, compared to fished areas. Overall species richness/diversity (5 studies): One global systematic review, and three site comparison studies (one replicated and paired, one replicated, one paired) in the Mediterranean Sea, the Tasman Sea, and the Firth of Clyde found that marine protected areas that had been prohibiting all fishing for five to 16 years depending on the study, had similar overall invertebrate species richness/diversity, similar combined algae, invertebrate and fish species richness, and similar combined mollusc and echinoderm species richness, compared to fished areas. One site comparison study in the Tasman Sea found inside a marine protected area prohibiting all mobile fishing that macroinvertebrate species richness remained stable over the 15 years after its designation and enforcement, but decreased at fished sites. POPULATION RESPONSE (2 STUDIES) Overall abundance (4 studies): Two systematic reviews of marine protected areas across the world prohibiting all fishing found that they had greater overall invertebrate abundance and biomass compared to fished areas. Two site comparison studies (one before-and-after, one replicated) in the Tasman Sea found that inside marine protected areas prohibiting all fishing, overall invertebrate abundance did not change over the 15 years after their designation and enforcement and that it did not change in fished areas either, and that all areas had similar combined mollusc and echinoderm abundance after 16 years. Overall condition (1 study): One global systematic review found that in marine protected areas prohibiting all fishing, invertebrates were bigger compared to fished areas. Crustacean abundance (17 studies): Two reviews (one global and systematic, one of New Zealand areas) found that marine protected areas prohibiting all fishing had more lobsters compared to marine protected areas only partially prohibiting fishing and unrestricted fished areas. Eleven of 15 site comparison studies (including replicated, randomized, paired, before-and-after) in the North Atlantic Ocean, the Bristol Channel and the Irish Sea, the Firth of Clyde, the Mediterranean Sea, the North Pacific Ocean, the Florida Keys, the South Pacific Ocean, the Tasman Sea, and the Coral Sea found that inside marine protected areas prohibiting all fishing, the abundances and/or biomasses of lobsters and mud crabs were higher compared to areas where seasonal or unrestricted fishing was allowed, after four to 33 years depending on the study. Four found that they had mixed effects on the abundances of lobster, and crab species, after one to seven years depending on the study. Two found that they had similar abundance of lobsters compared to fished areas after either five to seven years or after approximately 30 years.  Crustacean reproductive success (4 studies): Two site comparison studies (one replicated, randomized) in the Florida Keys and the Firth of Clyde found that marine protected areas prohibiting all fishing and harvesting had similar population sex ratios of lobsters compared to where seasonal fishing or all fishing was allowed, after four to seven years depending on the study. Two replicated, site comparison studies (one randomized) in the Tasman Sea and the Mediterranean Sea found that marine protected areas prohibiting all fishing had greater lobster egg production potential compared to commercial fishing exclusion zones and fully fished areas, after either 15 years or 21 to 25 years. One site comparison study in the Firth of Clyde found that marine protected areas prohibiting all fishing had more female lobsters with eggs than fished areas, after four to seven years. Crustacean condition (8 studies): One review of studies in New Zealand, and five of seven site comparison studies (four replicated, one replicated and randomized) in the North Atlantic Ocean, the Bristol Channel and the Irish Sea, the Firth of Clyde, the Florida Keys, the South Pacific Ocean, the Coral Sea, and the Tasman Sea, found that marine protected areas prohibiting all fishing had bigger lobsters and crabs compared to seasonally fished or fully fished areas, after four to seven years depending on the study. Three found mixed effects on lobsters and crabs depending on species, sex, and locations, after one to seven years depending on the study. Crustacean population structure (2 studies): Two replicated site comparison studies (one randomized) in the Tasman Sea and the Mediterranean Sea found that marine protected areas prohibiting all fishing had different population size structures of lobsters compared to commercial fishing exclusion zones (only for females) and compared to fished areas, after either 15 years or 21 to 25 years. Echinoderm abundance (3 studies): Two of three site comparison studies (two replicated, one paired) in the North Pacific Ocean, the South Pacific Ocean, and the North Pacific Ocean, found that marine protected areas prohibiting all fishing had similar abundance of Kina sea urchins after more than 10 years, and sea cucumbers after eight years to fished areas, and a third found higher abundance of red sea urchins after approximately 30 years. One also found that the effects on abundance of red sea urchins depended on the age of the protected area and the size of the urchins. Echinoderm condition (1 study): One paired, site comparison study in the South Pacific Ocean found that marine protected areas that had been prohibiting all fishing for over 10 years had heavier Kina sea urchins compared to fished areas. Mollusc abundance (10 studies): Four of 10 site comparison studies (including replicated before-and-after, and site comparison) in the North Atlantic Ocean, the North Pacific Ocean the South Pacific Ocean, the Tasman Sea, and the Foveaux Straight found that inside a marine reserve prohibiting all fishing, abundances/biomass of giant clams, adult queen conch, Cook’s turban snails, rock scallops and green abalone were higher compared to a fished area, after eight to 36 years depending on the study. Six found similar abundances of scallop species, pink abalone, juvenile queen conch, and top shell species, after five to 36 years depending on the study. Three found lower abundances of star limpets after 23 to 25 years and blacklip abalone after 15 to 16 years. One found that the effects of marine protected areas prohibiting all fishing on the abundance of mussel species compared to a commercial fishing exclusion zone varied with the age and location of the protected areas. Mollusc reproductive success (1 study): One site comparison study in the North Atlantic Ocean found that inside a marine protected area that had been prohibiting all fishing for 33 to 36 years, abundance of queen conch larvae was higher compared to an unprotected fished area. Mollusc condition (1 study): One site comparison study in the North Pacific Ocean found that in marine protected areas that had been prohibiting all fishing pink abalone were bigger five to 23 years after their designation, compared to fished site. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F2224https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F2224Tue, 22 Oct 2019 14:04:19 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust