Collected Evidence: Collected Evidence: Soil: Plant buffer stripsOrganic matter (1 study): One replicated, randomized, controlled study from Italy found more organic matter in plots with buffers. Nutrients (1 study): One replicated, randomized, controlled study from Italy found more nitrogen in plots with buffers. Soil organisms (1 study): One replicated, randomized, controlled study from Italy found more microbial biomass in plots with buffers. Soil erosion and aggregation (0 studies) Greenhouse gases (0 studies) Implementation options (1 study): One study from Italy found some differences between buffers of different widths, and other differences between buffers with different numbers of trees.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1372https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1372Mon, 15 May 2017 15:01:03 +0100Collected Evidence: Collected Evidence: Soil: Plant hedgerowsOrganic matter (0 studies) Nutrients (0 studies) Soil organisms (0 studies) Soil erosion and aggregation (1 study): One replicated site comparison from the USA found similar particle sizes in soils with or without planted hedgerows. Greenhouse gases (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1373https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1373Mon, 15 May 2017 15:03:05 +0100Collected Evidence: Collected Evidence: Soil: Restore habitat along watercoursesOrganic matter (1 study): One replicated site comparison from the USA found less carbon in soils at restored sites, compared to natural sites. Nutrients (1 study): One replicated site comparison from the USA found less nitrogen, phosphorus, and potassium in soils at restored sites, compared to natural sites. Soil organisms (1 study): One controlled study from the USA found different nematode communities in restored and unrestored areas. Soil erosion and aggregation (0 studies) Greenhouse gases (0 studies) Implementation options (1 study): One replicated site comparison from the USA found less carbon, nitrogen, and phosphorous in soils at older restored sites compared to younger restored sites.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1374https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1374Mon, 15 May 2017 15:07:41 +0100Collected Evidence: Collected Evidence: Soil: Exclude grazersOrganic matter (1 study): One replicated site comparison in shrublands in Spain found less carbon in soils at ungrazed sites, compared to cow-and-sheep-grazed sites. Nutrients (3 studies): Three replicated studies (one controlled, two site comparisons) from the USA and Spain found less nitrogen in soils in ungrazed areas, compared to sheep- or cattle-grazed areas, in some or all comparisons. One of these studies found more phosphorus in soils at ungrazed sites, compared to grazed sites. Soil organisms (1 study): One controlled study on a streambank in the USA found more nematodes and more diverse nematode communities in an area with goats and sheep excluded. Soil erosion and aggregation (0 studies) Greenhouse gases (3 studies): One replicated site comparison in shrublands in Spain found more carbon dioxide in soils (soil respiration) in ungrazed plots, compared to sheep- or cattle-grazed plots. One replicated, randomized, controlled study in grassland in the USA found similar amounts of carbon dioxide in soils (soil respiration) in ungrazed and cattle-grazed sites. One replicated, randomized, controlled study in wet grasslands in the USA found less methane in soils in ungrazed plots, compared to cattle-grazed plots. Implementation options (1 study): One replicated site comparison in shrubland in Spain found less carbon and nitrogen in untilled soils that were grazed, compared to ungrazed, but found no differences in tilled soils that were grazed or ungrazed.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1375https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1375Mon, 15 May 2017 15:11:34 +0100Collected Evidence: Collected Evidence: Soil: Use fewer grazersOrganic matter (0 studies) Nutrients (2 studies): One controlled study in wood pasture in Chile found more nitrogen and phosphorus in paddocks grazed at lower intensities, in some comparisons. One replicated, randomized, controlled study in grasslands in the USA found no difference in nitrogen between areas with low or high levels of simulated grazing. Soil organisms (0 studies) Soil erosion and aggregation (0 studies) Greenhouse gases (1 study): One replicated, randomized, controlled study in grasslands in the USA found no differences in rates of soil respiration between areas with low or high levels of simulated grazing.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1376https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1376Mon, 15 May 2017 15:13:39 +0100Collected Evidence: Collected Evidence: Water: Add compost to the soilWater use (0 studies) Water availability (4 studies): Two replicated, randomized, controlled studies from Turkey and the USA found more water in soil with added compost, compared to soil without added compost, in some or all comparisons. One replicated, randomized, controlled study from the USA found similar amounts of water in soil with or without added compost. One replicated, controlled study from Spain found that less water was lost as runoff from soil with added compost, compared to soil without added compost. Pathogens and pesticides (0 studies) Nutrients (2 studies): One replicated, randomized, controlled study from Spain found more nitrogen, phosphorus, and potassium in runoff from plots with added compost, compared to plots without added compost. One replicated, randomized, controlled study from Portugal found that more nitrate was leached from plots with added compost, compared to plots without added compost, in one of four comparisons. Sediments (1 study): One replicated, randomized, controlled study from Spain found more organic matter in runoff from plots with added compost, compared to plots without added compost. Implementation options (1 study): One replicated, randomized, controlled study from Portugal found that similar amounts of nitrate were leached from plots with or without added compost, if the compost was split into two small applications, compared to one large application.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1377https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1377Mon, 15 May 2017 15:18:09 +0100Collected Evidence: Collected Evidence: Water: Add manure to the soilWater use (0 studies) Water availability (3 studies): One replicated, randomized, controlled study from Turkey found more water in soils with added manure, compared to soils without added manure. Two replicated, controlled studies (one randomized) from Greece and the USA found similar amounts of water in soils with or without added manure. Pathogens and pesticides (0 studies) Nutrients (2 studies): One replicated, randomized, controlled study from Spain found more dissolved organic carbon, but similar amounts of nitrate, in runoff from plots with added manure, compared to plots without added manure. One replicated, randomized, controlled study from Spain found that more nitrate, ammonium, phosphorus, potassium, and organic matter was leached from soils with added manure, compared to soils without added manure. Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1378https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1378Mon, 15 May 2017 15:21:09 +0100Collected Evidence: Collected Evidence: Water: Add sewage sludge to the soilWater use (0 studies) Water availability (2 studies): One replicated, controlled study from Spain found less runoff from plots with added sewage sludge, compared to plots without it, in one of four comparisons. One replicated, controlled study from the USA found similar amounts of water in soils with or without added sewage sludge. Pathogens and pesticides (0 studies) Nutrients (1 studies): One replicated, randomized, controlled study from Portugal found that more nitrate was leached from soils with added sewage sludge, compared to soils without it, in some comparisons. Sediments (0 studies) Implementation options (1 study): One replicated, controlled study from Portugal found that more nitrate was leached from plots with a split application of sewage sludge, but not with a single application, compared to plots without added sewage sludge.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1379https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1379Mon, 15 May 2017 15:23:14 +0100Collected Evidence: Collected Evidence: Water: Add slurry to the soilWater use (0 studies) Water availability (2 studies): One replicated, randomized, controlled study from Spain found similar amounts of water in soils with or without added slurry, and another one found similar amounts of water-filled pore space. Pathogens and pesticides (0 studies) Nutrients (5 studies): Two replicated, randomized, controlled studies from Spain found that more nitrate was leached from plots with added slurry, compared to plots without it. One of these studies also found that more nitrate was lost in runoff from plots with added slurry, in some comparisons. Two replicated, randomized, controlled studies from Portugal and Spain found that similar amounts of nitrate were leached from plots with or without added slurry. Two replicated, randomized, controlled studies from Spain found more dissolved organic matter in soils, or leached from soils, with added slurry. Sediments (0 studies) Implementation options (3 studies): One study from Spain found that less nitrate was leached from plots with surface application, compared to injection, of slurry. One study from Spain found that less nitrate was lost through runoff and leaching from plots with less added slurry, compared to more. One study from Spain found similar amounts of water-filled pore space in soils with digested or untreated pig slurry, and another found similar amounts of water-filled pore space in plots with less or more added slurry.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1380https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1380Mon, 15 May 2017 15:25:49 +0100Collected Evidence: Collected Evidence: Water: Use organic fertilizer instead of inorganicWater use (0 studies) Water availability (5 studies): Two replicated, randomized, controlled studies from Spain found similar amounts of water-filled pore space in plots with organic or inorganic fertilizer. Two replicated studies (one randomized and controlled, one site comparison) from France and Turkey found more water in plots with organic fertilizer, compared to inorganic fertilizer. One replicated, randomized, controlled study from Spain found less water in plots with organic fertilizer, compared to inorganic fertilizer, in one of two comparisons. Pathogens and pesticides (0 studies) Nutrients (6 studies): Two replicated, randomized, controlled studies from Italy and Spain found that less nitrate was lost from plots with organic fertilizer, compared to inorganic fertilizer, in some comparisons. One of these studies also found that more dissolved organic matter was lost, in one of two comparisons. One replicated, randomized, controlled study from Spain found more nitrate in runoff from plots with organic fertilizer, compared to inorganic fertilizer. Three replicated, controlled studies (two randomized) from Portugal and Spain found that similar amounts of nitrogen were lost from plots with organic or inorganic fertilizer. Sediments (0 studies) Implementation options (1 study): One study from Spain found that less nitrate, but more organic matter, was leached from plots that were fertilized with manure, compared to slurry.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1381https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1381Mon, 15 May 2017 15:31:47 +0100Collected Evidence: Collected Evidence: Water: Plant or maintain ground cover in orchards or vineyardsWater use (3 studies): Two replicated, controlled studies (one randomized) from the USA found that plants used more water in plots with ground cover, compared to plots with bare soil. One replicated, randomized, controlled study from Portugal found inconsistent differences in water use (sometimes less, sometimes more) between plots with ground cover and plots with tilled soil. Implementation options (2 studies): Two studies from Portugal and the USA found that plants used similar amounts of water in plots with different types of ground cover. Water availability (17 studies) Water content (13 studies): Four studies (three replicated, randomized, and controlled; one site comparison) from Spain and the USA found less water, or less available water in some comparisons, in soils with seeded cover crops, compared to tilled soils. Two replicated, randomized, controlled studies from Portugal and the USA found more water, or more available water, in soils with ground cover, compared to tilled soils, in some comparisons. Two replicated, randomized, controlled studies from France and the USA found inconsistent differences in water content (sometimes less, sometimes more) in soils with seeded cover crops, compared to bare or tilled soils. Three replicated studies (two randomized and controlled, one site comparison) from Chile, France, and Portugal found similar amounts of water in soils with or without ground cover. Three replicated, controlled studies (two randomized) from Chile and the USA found greater water infiltration or soil porosity in plots with seeded cover crops, compared to bare soil, but one replicated, controlled study from France did not. Water loss (7 studies): Six replicated, controlled studies (five randomized) from Chile, France, Italy, Spain, and the USA found that less water was lost as runoff from plots with seeded cover crops, compared to bare or tilled plots, in some or all comparisons. One replicated, randomized, controlled study from Spain found inconsistent differences in runoff between plots with ground cover and plots with tilled soil. Implementation options (5 studies): Three studies from vineyards in the USA found different amounts of water in soils with different types of ground cover, but two studies from Portugal and the USA did not. Pathogens and pesticides (0 studies) Nutrients (2 studies): One replicated, randomized, controlled study from Chile found less nitrogen, phosphorus, and dissolved organic carbon in runoff from plots with seeded cover crops, compared to plots with bare soil. One replicated, randomized, controlled study from the USA found similar amounts of nitrate, nitrogen, and phosphorus in runoff from plots with seeded cover crops, compared to bare soils. Sediments (4 studies): Three replicated, randomized, controlled studies from Chile, Spain, and the USA found less sediment in runoff from plots with ground cover, compared to bare or tilled soil, in some or all comparisons. One replicated, controlled study from France found similar amounts of sediment in runoff from plots with seeded cover crops or bare soil.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1382https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1382Mon, 15 May 2017 15:42:50 +0100Collected Evidence: Collected Evidence: Water: Use crop rotationsWater use (2 studies): One replicated, randomized, controlled study from Turkey found higher water-use efficiency in plots with crop rotations, compared to continuous wheat, in some comparisons. One replicated, randomized, controlled study from Spain found lower water-use efficiency in plots with crop rotations, compared to continuous wheat, in some comparisons. Water availability (3 studies): Two replicated, randomized, controlled studies from Australia found similar amounts of water in soils with crop rotations or continuous crops. One replicated, randomized, controlled study from Turkey found inconsistent differences in water storage in soils with or without crop rotations. Pathogens and pesticides (0 studies) Nutrients (0 studies) Sediments (0 studies) Implementation options (1 study): One study from Spain found no difference in water-use efficiency between plots with different crop rotations.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1383https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1383Mon, 15 May 2017 15:45:50 +0100Collected Evidence: Collected Evidence: Water: Use no tillage in arable fieldsWater use (1 study): One replicated, randomized, controlled study from Spain found that barley used water more efficiently in plots without tillage, compared to plots with tillage, in some comparisons. Water availability (14 studies): Nine controlled studies (eight replicated and randomized) from Spain and the USA found more water in soils without tillage, compared to soils with tillage, in some or all comparisons. One replicated, randomized, controlled study from Lebanon found less water in soils without tillage, compared to soils with tillage, in some comparisons. Three replicated, controlled studies (two randomized) from Spain and the USA sometimes found more water, and sometimes found less water, in soils without tillage, compared to soils with tillage. One replicated, randomized, controlled study from Spain found lower porosity in soils without tillage, compared to soils with tillage, in some comparisons. Pathogens and pesticides (0 studies) Nutrients (0 studies) Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1384https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1384Mon, 15 May 2017 15:49:43 +0100Collected Evidence: Collected Evidence: Water: Use no tillage instead of reduced tillageWater use (1 study): One replicated, randomized, controlled study from Spain found that crops used water more efficiently in plots with no tillage, compared to reduced tillage, in one of four comparisons. Water availability (9 studies): Six controlled studies from Spain (five of which were replicated and randomized) found more water in soils with no tillage, compared to reduced tillage, in some or all comparisons. One replicated, randomized, controlled study from Spain found less water in soils with no tillage, compared to reduced tillage, in one of fifteen comparisons. Two replicated, randomized, controlled studies from Australia and Lebanon found similar amounts of water in soils with no tillage or reduced tillage. Pathogens and pesticides (0 studies) Nutrients (0 studies) Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1385https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1385Mon, 15 May 2017 15:53:00 +0100Collected Evidence: Collected Evidence: Water: Use reduced tillage in arable fieldsWater use (3 studies): Two replicated, randomized, controlled studies from Spain and Turkey found that crops used water more efficiently in plots with reduced tillage, compared to conventional tillage, in some comparisons. One replicated, randomized, controlled study from Egypt found that crops used water more efficiently in plots with less-frequent tillage (one pass with a plough, compared to two), but crops used water less efficiently in plots with shallow tillage, compared to deep tillage. Water availability (14 studies) Water content (12 studies): Six controlled studies (five replicated and randomized) from Egypt and Spain found more water in soils with reduced tillage, compared to conventional tillage, in some or all comparisons. Two of these studies also found less water in soils with reduced tillage, compared to conventional tillage, in some comparisons. Two replicated, randomized, controlled studies from Lebanon and the USA found less water in soils with reduced tillage, compared to conventional tillage, in some comparisons. Four controlled studies from Egypt, Italy, and Spain (three of which were replicated and randomized), found similar amounts of water in soils with reduced tillage or conventional tillage, in all comparisons. Water loss (2 studies): One replicated, controlled study from France found that less water was lost through drainage from soils with reduced tillage, compared to conventional tillage, during the growing season, but more water was lost during the fallow season, in some comparisons. One replicated, randomized, controlled study from Egypt found that less water was lost through runoff from soils with less-frequent tillage (one pass with a plough, compared to two), but more water was lost through runoff from soils with shallow tillage, compared deep tillage. Water infiltration (3 studies): One replicated, randomized, controlled study from Egypt found that water infiltration rates were faster in soils with reduced tillage, compared to conventional tillage, in some comparisons. Two replicated, controlled studies from Spain and the USA found that water infiltration rates were similar in soils with reduced tillage or conventional tillage. Pathogens and pesticides (1 study): One replicated, randomized, controlled study from France found that less herbicide was leached from soils with reduced tillage, compared to conventional tillage. Nutrients (0 studies) Sediments (0 studies) Implementation options (2 studies): One replicated, randomized, controlled study from Egypt found more water and faster water infiltration rates in soils that were tilled at slower tractor speeds, but found that water losses and water-use efficiencies were similar in plots that were tilled at different tractor speeds. One replicated, randomized, controlled study from Turkey found that water-use efficiencies were similar in plots with different types of reduced tillage (rototilling and disking, compared to double disking).Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1386https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1386Mon, 15 May 2017 15:58:07 +0100Collected Evidence: Collected Evidence: Water: Plant buffer stripsWater use (0 studies) Water availability (2 studies): One replicated, randomized, controlled study from Italy found more soil moisture in plots with buffers, compared to plots without buffers, in some comparisons. One replicated, randomized, controlled study from the USA found that similar amounts of water were lost as runoff from plots with or without buffers. Pathogens and pesticides (1 study): One replicated study from the USA found that grass buffer strips decreased the amount of Cryptosporidium parvum (a protozoan pathogen) in runoff, after bovine manure was applied to slopes. Nutrients (2 studies): One replicated, randomized, controlled study from the USA found less nitrate in runoff from irrigated pastures with buffer strips, but another one found no differences in nitrate or phosphorus in runoff from pastures with or without buffer strips. Sediments (2 studies): Two replicated, controlled studies (one randomized) from the USA found less sediment in runoff from irrigated fields or pastures with buffers, compared to those without buffers, in some or all comparisons. Implementation options (3 studies): One replicated study from the USA found less C. parvum (a protozoan pathogen) in runoff from flatter buffer strips, compared to steeper. One replicated, randomized, controlled study from Italy found more soil moisture in plots with narrower buffer strips, in one of two comparisons. One replicated, randomized, controlled study from the USA found that buffers trapped more runoff in the four weeks after fertilizer application, compared to the next 10 weeks.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1387https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1387Mon, 15 May 2017 16:00:45 +0100Collected Evidence: Collected Evidence: Water: Restore habitat along watercoursesWater use (0 studies) Water availability (1 study): One replicated site comparison in the USA found similar amounts of water, in soils, in restored and remnant riparian habitats. Pathogens and pesticides (0 studies) Nutrients (0 studies) Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1388https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1388Mon, 15 May 2017 16:02:12 +0100Collected Evidence: Collected Evidence: Water: Exclude grazersWater use (0 studies) Water availability (4 studies): Four studies (three replicated, randomized, and controlled) in grasslands and shrublands in the USA and Spain found less water in areas with cattle and sheep excluded, compared to grazed areas, in some or all comparisons. Pathogens and pesticides (0 studies) Nutrients (2 studies): Two replicated, randomized, controlled studies in wet grasslands in the USA found inconsistent differences in nitrogen, phosphorus, and pH in surface water in areas with cattle excluded, compared to grazed areas. One of these studies found more nitrate in stream water in ungrazed areas, compared to grazed areas, in one of two experiments. Sediments (1 study): One replicated, randomized, controlled study in wet grasslands in the USA found no difference in surface water turbidity between areas with cattle excluded and grazed areas.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1389https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1389Mon, 15 May 2017 16:04:29 +0100Collected Evidence: Collected Evidence: Water: Use fewer grazersWater use (0 studies) Water availability (0 studies) Pathogens and pesticides (0 studies) Nutrients (1 study): One replicated, randomized, controlled study in wet grasslands in the USA found no differences in nitrate and pH levels in surface water between areas grazed by cattle at low or moderate intensities. Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1390https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1390Mon, 15 May 2017 16:07:56 +0100Collected Evidence: Collected Evidence: Water: Use seasonal grazingWater use (0 studies) Water availability (1 study): One replicated, randomized, controlled study in wet grasslands in the USA found that pools were wet for longer in continuously, compared to seasonally, grazed plots. Pathogens and pesticides (0 studies) Nutrients (0 studies) Sediments (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1391https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1391Mon, 15 May 2017 16:09:39 +0100Collected Evidence: Collected Evidence: Pest regulation: Add compost to the soilPest regulation (2 studies): Of two replicated, randomized, controlled studies from the USA and an unspecified Mediterranean country, one study found less disease in crops grown in soils with added compost, compared to soils without it, in some comparisons, but one study found no differences in most crop diseases. One replicated, controlled study from the USA found similar amounts of Escherichia coli bacteria in plots with or without added compost. This study also found that similar percentages of pests were consumed by natural enemies in plots with or without added compost. Crop damage (1 study): One replicated, randomized, controlled study found fewer dead tomato plants in soil with added compost, compared to soil without added compost, in some comparisons. Ratio of natural enemies to pests (1 study): One replicated, controlled study from the USA found similar ratios of natural enemies to pests (mostly aphids) in plots with or without added compost. Pest numbers (1 study): One replicated, controlled study from the USA found similar pest numbers in plots with or without added compost. Natural enemy numbers (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1392https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1392Mon, 15 May 2017 16:13:04 +0100Collected Evidence: Collected Evidence: Pest regulation: Use organic fertilizer instead of inorganicPest regulation (0 studies) Crop damage (0 studies) Ratio of natural enemies to pests (0 studies) Pest numbers (2 studies): One replicated, randomized, controlled study from the USA found more aphids in plots with organic fertilizer, compared to inorganic fertilizer, in some comparisons, but another one found similar numbers of aphids in the same study system. Natural enemy numbers (0 studies)Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1393https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1393Mon, 15 May 2017 16:14:56 +0100Collected Evidence: Collected Evidence: Pest regulation: Grow cover crops in arable fieldsPest regulation (1 study): One replicated, randomized, controlled study from the USA found that fewer aphids were parasitized in plots with cover crops (living mulches) between broccoli plants, compared to plots without cover crops, in some comparisons. Crop damage (6 studies): Three controlled studies (two replicated and randomized) from the USA found similar numbers of diseased broccoli seedlings or tomato plants in plots with or without winter cover crops. Two replicated, randomized, controlled studies from the USA found less-severely diseased lettuces in plots with winter cover crops, compared to winter fallows, in some comparisons. One replicated, randomized, controlled study from the USA found inconsistent differences in tomato damage between plots with cover crops or fallows. Ratio of natural enemies to pests (0 studies) Pest numbers (14 studies) Weeds (8 studies): Four replicated, randomized, controlled studies from Israel and Italy found fewer weeds in plots with cover crops, compared to plots without them, in some or all comparisons. One replicated, randomized, controlled study from the USA found more weeds in plots with winter cover crops, compared to plots without them, in some comparisons. Two replicated, controlled studies (one randomized) from Italy and the USA found that winter cover crops had inconsistent effects on weeds (sometimes more, sometimes fewer, compared to plots without winter cover crops). One controlled study from the USA found similar amounts of weeds in plots with winter cover crops or fallows. Weed species (2 studies): One replicated, randomized, controlled study from Italy found fewer weed species in plots with winter cover crops, compared to plots without them, in one of three comparisons. One replicated, randomized, controlled study from the USA found different weed communities in plots with or without winter cover crops. Other pests (6 studies): Two replicated, randomized, controlled studies from the USA found fewer aphids in plots with cover crops (living mulches) between broccoli plants, compared to plots without cover crops, in some comparisons. One replicated, randomized, controlled study from the USA found more mites (in some comparisons), but similar numbers of centipedes and springtails, in plots with winter cover crops, compared to plots without them. One replicated, randomized, controlled study from the USA found similar numbers of leafminers in plots with or without winter cover crops. One replicated, randomized, controlled study from the USA found similar amounts of fungus in soils with or without winter cover crops. One replicated, randomized, controlled study from the USA found inconsistent differences in nematode numbers between soils with cover crops or fallows. Natural enemy numbers (0 studies) Implementation options (13 studies): Nine studies from Israel, Italy, and the USA found that different cover crops had different effects on crop damage or pest numbers. Two studies from the USA found that different cover crops (living mulches) did not have different effects on pest regulation or pest numbers. Two studies from the USA found that different methods of seeding cover crops had different effects on pest numbers.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1394https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1394Mon, 15 May 2017 16:19:52 +0100Collected Evidence: Collected Evidence: Pest regulation: Plant or maintain ground cover in orchards or vineyardsPest regulation (3 studies): One replicated, randomized, controlled study from the USA found that more leafhopper eggs were parasitized in plots with cover crops, compared to bare fallows, in one of six comparisons. Two replicated, randomized, controlled studies from the USA found inconsistent differences or no differences in the parasitism of leafhopper eggs between plots with or without ground cover. Crop damage (1 study): One replicated, randomized, controlled study from the USA found that more grapes were damaged by pests in plots with cover crops, compared to bare fallows, in some comparisons. Ratio of natural enemies to pests (0 studies) Pest numbers (12 studies) Weeds (2 studies): One replicated, randomized, controlled study in an olive orchard in Spain found fewer weeds in plots with cover crops, compared to bare soil, in one of two comparisons. One replicated, controlled study from a vineyard in the USA found more weeds in plots with cover crops, compared to bare soil, in one of nine comparisons. Implementation options (4 studies): Three studies from vineyards in the USA found different numbers of weeds or weed species in plots with different types of ground cover, in some or all comparisons. One study from the USA found similar numbers of weeds in vine rows with or without cover crops. One replicated, randomized, controlled study from the USA found that plant diversity decreased over time in plots without tillage, but increased in plots with tillage. This study found that tillage had no effects on the number of plant species and had inconsistent effects on plant biomass. Insects (5 studies): Two replicated, controlled studies (one randomized) from the USA found fewer leafhoppers in plots with cover crops, in some comparisons. One replicated, randomized, controlled study from the USA found more leafhoppers, in some comparisons. One replicated, randomized, controlled study from the USA found similar numbers of leafhoppers. One replicated, randomized, controlled study from the USA found more navel orangeworm moths in plots with resident vegetation, compared to tilled soil, in one of two comparisons. Implementation options (2 studies): Two studies from the USA found fewer pests in plots with mown ground cover, compared to unmown ground cover or ground cover before mowing. Mammals (1 study) Implementation options (1 study): One study from the USA found more gophers in plots with clover, compared to other cover crops. Natural enemy numbers (6 studies): Four replicated, controlled studies (three randomized) from Spain and the USA found more natural enemies in plots with ground cover, compared to plots without ground cover, in some or all comparisons. One replicated, controlled study from the USA found fewer parasitoids in plots with ground cover, in some comparisons. One replicated, randomized, controlled study from the USA found inconsistent differences in the numbers of spiders between plots with or without ground cover. One of these studies found no difference in the number of spider species between plots with or without ground cover, and another one found no difference in the composition of spider communities. Implementation options (1 study): One study from the USA found more natural enemies in plots with mown cover crops, one week after mowing, compared to before mowing. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1395https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1395Mon, 15 May 2017 16:22:21 +0100Collected Evidence: Collected Evidence: Pest regulation: Use crop rotationsPest regulation (0 studies) Crop damage (0 studies) Ratio of natural enemies to pests (0 studies) Pest numbers (1 study): One replicated, randomized, controlled study from Australia found less weed biomass in plots with a canola-wheat sequence, compared to a wheat-wheat sequence. Natural enemy numbers (0 studies) Implementation options (1 study): One replicated, randomized, controlled study from the USA found similar amounts of weed biomass in plots with four-year or two-year crop rotations.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1396https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F1396Fri, 19 May 2017 08:56:42 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust