Collected Evidence: Collected Evidence: Facilitate tidal exchange before/after planting non-woody plants: brackish/saline wetlands Two studies evaluated the effects, on vegetation, of facilitating tidal exchange in brackish/saline wetlands planted with emergent, non-woody plants. Both studies were in the same estuarine site in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, controlled study in a salt marsh in the USA found that planted California cordgrass Spartina foliosa reached a similar height, after three growing seasons, in areas with an excavated tidal creek and areas without a tidal creek. Individual plant size (1 study): One replicated, controlled study in a salt marsh in the USA found that planted salt marsh herbs reached a similar overall size, after 1–2 growing seasons, in areas with an excavated tidal creek and areas without a tidal creek. OTHER Survival (2 studies): Two replicated, controlled studies in a salt marsh in the USA found that planted salt marsh herbs typically had similar survival rates, after 1–2 growing seasons, in areas with an excavated tidal creek and areas without a tidal creek. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3277https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3277Sat, 10 Apr 2021 17:07:28 +0100Collected Evidence: Collected Evidence: Actively manage water level before/after planting non-woody plants: freshwater wetlands Three studies evaluated the effects, on vegetation, of actively managing water levels in freshwater wetlands planted with emergent, non-woody plants. All three studies were in the USA. Two studies used the same experimental wet basins but planted different species. VEGETATION COMMUNITY Overall richness/diversity (1 study): One study in a freshwater marsh in the USA found that amongst plots amended with wetland soil, those flooded for longer contained fewer emergent plant species over the rest of the growing season following drawdown. Characteristic plant richness/diversity (1 study): The same study found that amongst plots amended with wetland soil, those flooded for longer contained fewer wetland-characteristic plant species over the rest of the growing season following drawdown. VEGETATION ABUNDANCE  Overall abundance (1 study): One study in a freshwater marsh in the USA found that amongst plots amended with wetland soil, those flooded for longer developed more submerged vegetation biomass before drawdown, but developed less emergent vegetation (biomass and stem density) over the rest of the growing season after drawdown. Individual species abundance (2 studies): Two studies quantified the effect of this action on the abundance of individual plant species. For example, one controlled, before-and-after study in wet basins in the USA found that the effect of mimicking a natural (falling) water regime on lake sedge Carex lacustris biomass and density, in the three years after planting, depended on the year and various environmental factors (e.g. planting density, elevation and weeding of competitors). VEGETATION STRUCTURE Height (2 studies): Two controlled studies in wet basins in the USA examined the effect of mimicking a natural (falling) water regime, compared to a stable or rising regime, on the height of sedges over three years after planting. One of the studies found no significant effect on the height of tussock sedge Carex stricta in three of three years. The other study found that the effect on the height of lake sedge Carex lacustris varied within and between years. OTHER Survival (2 studies): Two controlled studies in wet basins in the USA examined the effect of mimicking a natural (falling) water regime, compared to a stable or rising regime, on the survival of sedges Carex over three years after planting. The precise effect depended on the year and/or plot elevation. In the first year, sedge survival was typically lower under the falling regime. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3281https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3281Sat, 10 Apr 2021 17:15:30 +0100Collected Evidence: Collected Evidence: Create mounds or hollows before planting non-woody plants: freshwater wetlands Two studies evaluated the effects, on vegetation, of creating mounds or hollows in freshwater wetlands before planting emergent, non-woody plants. Both studies were in the same wetland in the USA, but used different experimental set-ups. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual species abundance (2 studies): Two replicated, randomized, paired, controlled studies in a wetland in the USA found that tussock sedge Carex stricta cover was typically similar across plots, after two growing seasons, whether sedges were planted into created mounds or hollows, or planted into flat ground. VEGETATION STRUCTURE Individual plant size (2 studies): Two replicated, randomized, paired, controlled studies in a wetland in the USA found that planting tussock sedges Carex stricta into created mounds or hollows had no significant effect on their individual biomass, after 1–2 growing seasons, when compared to planting into flat ground. OTHER Survival (2 studies): Two replicated, randomized, paired, controlled studies in a wetland in the USA found that planting tussock sedge Carex stricta into created mounds or hollows did not improve, and typically reduced, its survival rate compared to planting into flat ground. Survival was monitored after 1–2 growing seasons. Growth (2 studies): The same studies found that planting tussock sedge Carex stricta into created mounds or hollows typically had no significant effect on its growth rate, over 1–2 growing seasons, compared to planting into flat ground. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3286https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3286Sat, 10 Apr 2021 17:34:46 +0100Collected Evidence: Collected Evidence: Create mounds or hollows before planting non-woody plants: brackish/saline wetlands One study evaluated the effects, on vegetation, of creating mounds or hollows in brackish/saline wetlands before planting emergent, non-woody plants. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual species abundance (1 study): One replicated, randomized, paired, controlled study in an estuarine salt marsh in the USA found that amongst plots sown/planted with dwarf saltwort Salicornia bigelovii, those that had been excavated into depressions had lower cover of dominant pickleweed Salicornia virginica – over the first growing season – than plots left at ground level. VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, randomized, paired, controlled study in an estuarine salt marsh in the USA found that there were no more (sometimes fewer) dwarf saltwort Salicornia bigelovii seedlings in excavated depressions than in level plots, two months after sowing saltwort seeds. Survival (1 study): The same study found that the survival rate of dwarf saltwort Salicornia bigelovii transplants was not greater (sometimes lower) in excavated depressions than in level plots. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3287https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3287Sat, 10 Apr 2021 17:34:58 +0100Collected Evidence: Collected Evidence: Create mounds or hollows before planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of creating mounds or hollows in brackish/saline wetlands before planting trees/shrubs. The study was in Brazil. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, controlled study in a degraded coastal swamp in Brazil reported that planting tree seedlings into mounds had mixed effects on survival over three years, depending on the species. Growth (1 study): The same study reported that tree seedlings planted into mounds typically grew at a similar rate, over three years, to seedlings planted at ground level. Growth was measured in terms of diameter, height and canopy area. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3289https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3289Sat, 10 Apr 2021 17:35:23 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting non-woody plants: brackish/saline wetlands Two studies evaluated the effects, on vegetation, of disturbing the surface of brackish/saline wetlands before planting emergent, non-woody plants. Both studies were in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Individual plant abundance (1 study): One study quantified the effect of this action on the abundance of individual plant species. The replicated, randomized, paired, controlled study in a salt marsh in the USA found that tilling sediment before planting California cordgrass Spartina foliosa had no significant effect on its biomass or density after two growing seasons, but did reduce its biomass after one growing season. VEGETATION STRUCTURE Height (1 study): One replicated, randomized, paired, controlled study in a salt marsh in the USA found that tilling sediment before planting California cordgrass Spartina foliosa had no significant effect on its height after 1–2 growing seasons. Individual plant size (1 study): One replicated, randomized, paired, controlled study on estuarine sediment in the USA found that the average size of planted salt marsh plants was similar, after 1–2 years, in tilled and untilled plots. Size was reported as an index incorporating plant height and lateral extent. OTHER Survival (1 study): One replicated, randomized, paired, controlled study on estuarine sediment in the USA found that survival rates of planted salt marsh plants were similar, over 1–2 years, in tilled and untilled plots. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3293https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3293Sun, 11 Apr 2021 07:56:47 +0100Collected Evidence: Collected Evidence: Disturb soil/sediment surface before planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of disturbing the surface of brackish/saline wetlands before planting trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, controlled study on an estuarine mudflat in Australia found that ploughing the substrate before planting grey mangrove Avicennia marina propagules had no significant effect on their height after two growing seasons. OTHER Survival (1 study): One replicated, controlled study on an estuarine mudflat in Australia found that ploughing the substrate before planting grey mangrove propagules had no significant effect on their survival over two growing seasons. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3295https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3295Sun, 11 Apr 2021 07:57:16 +0100Collected Evidence: Collected Evidence: Add inorganic fertilizer before/after planting trees/shrubs: freshwater wetlands Two studies evaluated the effects, on vegetation, of adding inorganic fertilizer to freshwater wetlands planted with trees/shrubs. Both studies were in the USA. VEGETATION COMMUNITY                  VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, paired, controlled study in the USA found that adding fertilizer had no significant effect, after two years, on the height of tree saplings planted into floating peat bags. Diameter, perimeter, area (1 study): The same study found that adding fertilizer had no significant effect, after two years, on the diameter of two of three tree species planted into floating peat bags. However, fertilized pond apple Annona glabra saplings had thicker stems than unfertilized saplings. OTHER Growth (1 study): One replicated, randomized, controlled study in the USA found that adding fertilizer increased the growth rate of baldcypress Taxodium distichum seedlings planted into a marsh. This was true for both diameter and height growth. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3306https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3306Sun, 11 Apr 2021 08:57:33 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of adding below-ground organic matter to freshwater wetlands planted with trees/shrubs. The study was in the USA. VEGETATION COMMUNITY Community composition (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that amongst plots planted with tree seedlings, those amended with large amounts compost contained a plant community characteristic of drier conditions, three years later, than the community in unamended plots. The lowest compost dose had no significant effect on this outcome. Overall richness/diversity (1 study): The same study found that amongst plots planted with tree seedlings, those amended with a large amount of compost had lower plant species richness and diversity, three years later, than unamended plots. Lower compost doses had no significant effect on either outcome. VEGETATION ABUNDANCE Overall abundance (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that amongst plots planted with tree seedlings, those amended with compost supported a similar overall vegetation biomass, three years later, to unamended plots. VEGETATION STRUCTURE Individual plant size (1 study): One replicated, randomized, paired, controlled study in a created wetland in the USA found that birch Betula saplings were larger, three years after planting seedlings, in plots amended with large amounts of compost than in unamended plots. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3310https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3310Sun, 11 Apr 2021 09:51:11 +0100Collected Evidence: Collected Evidence: Add below-ground organic matter before/after planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of adding below-ground organic matter to brackish/saline wetlands planted with trees/shrubs. The study was in Brazil. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, controlled study in a coastal swamp in Brazil reported that adding manure to plots planted with tree seedlings had mixed effects on their survival over three years, depending on the species of tree and dose of manure. Growth (1 study): The same study reported that adding manure to plots planted with tree seedlings had mixed effects on their growth over three years, depending on the species of tree and dose of manure. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3311https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3311Sun, 11 Apr 2021 09:51:23 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting non-woody plants: freshwater wetlands One study evaluated the effects, on vegetation, of mulching freshwater wetlands planted with emergent, non-woody plants. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Herb abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that mulching with woodchips before planting native understory herbs either increased or had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that mulching with woodchips before planting native understory herbs reduced the cover of one problematic species (common reed Phragmites australis) one year later, but had no significant effect on another (reed canarygrass Phalaris arundinacea). VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3312https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3312Sun, 11 Apr 2021 12:05:44 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting non-woody plants: brackish/saline wetlands One study evaluated the effects, on vegetation, of mulching brackish/saline wetlands planted with emergent, non-woody plants. The study was in Canada. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Overall abundance (1 study): One replicated, randomized, paired, controlled study in intertidal brackish marshes in Canada found that adding surface mulch after planting wetland herbs typically had no significant effect on total live vegetation biomass, two growing seasons later. Individual species abundance (1 study): The same study found that adding surface mulch increased the cover of one of two planted herb species (creeping alkaligrass Puccinellia phryganodes) but had no significant effect on cover of the other species (estuary sedge Carex subspathacea). Cover was monitored over the second growing season after planting/mulching. VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, paired, controlled study in intertidal brackish marshes in Canada found that adding surface mulch had no significant effect on the survival of two of two planted herb species, after two growing seasons. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3313https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3313Sun, 11 Apr 2021 12:05:55 +0100Collected Evidence: Collected Evidence: Add surface mulch before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of mulching freshwater wetlands planted with trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that mulching with woodchips before planting native shrubs had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that mulching with woodchips before planting swamp gum Eucalyptus camphora seedlings had no significant effect on swamp gum cover, one year later. Mulching reduced cover of the problematic herb species in one of two swamps, but had no significant effect in the other. VEGETATION STRUCTURE Height (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that planted swamp gum Eucalyptus camphora seedlings reached a similar height, after one year, in mulched and unmulched plots. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3314https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3314Sun, 11 Apr 2021 12:06:05 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting non-woody plants: freshwater wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to freshwater wetlands planted with emergent, non-woody plants. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that covering plots with plastic or jute mats before planting native understory herbs increased their overall cover, one year later. Individual species abundance (1 study): The same study found that covering plots with plastic or jute mats before planting native understory herbs reduced the cover of two problematic herb species, one year later. VEGETATION STRUCTURECollected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3316https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3316Sun, 11 Apr 2021 12:19:16 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting trees/shrubs: freshwater wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to freshwater wetlands planted with trees/shrubs. The study was in Australia. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Tree/shrub abundance (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that covering plots with plastic or jute mats before planting native shrubs had no significant effect on their overall cover, one year later. Individual species abundance (1 study): The same study found that covering plots with plastic or jute mats before planting swamp gum Eucalyptus camphora seedlings had no significant effect on swamp gum cover, one year later. Covering plots with mats also reduced cover of two problematic herb species. VEGETATION STRUCTURE                                          Height (1 study): One replicated, randomized, paired, controlled study in floodplain swamps in Australia found that planted swamp gum Eucalyptus camphora seedlings reached a similar height, after one year, in covered and uncovered plots. Covers were plastic or jute mats. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3318https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3318Sun, 11 Apr 2021 12:19:45 +0100Collected Evidence: Collected Evidence: Add cover other than mulch before/after planting trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of adding cover other than mulch to brackish/saline wetlands planted with trees/shrubs. The study was in Mexico. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Growth (1 study): One controlled study on a sandflat in Mexico reported that planted black mangrove Avicennia germinans seedlings grew more in height, over six months, when shaded with black mesh than when not shaded. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3319https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3319Sun, 11 Apr 2021 12:19:58 +0100Collected Evidence: Collected Evidence: Transplant wetland soil before/after planting non-woody plants: freshwater wetlands Two studies evaluated the effects, on vegetation, of transplanting wetland soil to freshwater wetlands planted with emergent, non-woody plants. One study was in the USA and one was in Canada. VEGETATION COMMUNITY Community composition (1 study): One replicated, site comparison study of created freshwater marshes in the USA found that those amended with marsh soil developed plant communities characteristic of wetter conditions than unamended marshes. Most marshes had also been planted. All were ≥5 years old. Overall richness/diversity (1 study): The same study found that marshes amended with marsh soil had similar (dry season) or lower (wet season) plant species richness and diversity to unamended marshes. Most marshes had also been planted. All were ≥5 years old. VEGETATION ABUNDANCE                 Overall abundance (1 study): One replicated, site comparison study of created freshwater marshes in the USA reported that amongst planted marshes, adding marsh soil had no significant effect on overall vegetation cover or biomass, after ≥5 years. Characteristic plant abundance (1 study): One replicated, site comparison study of created freshwater marshes in the USA reported that amongst planted marshes, those also amended with marsh soil had greater cover of wetland-characteristic plants than unamended marshes, after ≥5 years. Individual species abundance (1 study): One replicated, randomized, paired, controlled study in freshwater trenches in Canada found that adding peat-rich soil to pots of mine tailings before planting water sedge Carex aquatilis typically increased its above-ground biomass two growing seasons later. VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, randomized, paired, controlled study in freshwater trenches in Canada found that adding peat-rich soil to pots of mine tailings either increased or had no significant effect on survival of planted water sedge Carex aquatilis over two growing seasons. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3320https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3320Sun, 11 Apr 2021 12:33:22 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal non-woody plants: freshwater wetlands Two studies evaluated the effects, on vegetation, of introducing nurse plants to freshwater wetlands planted with emergent, non-woody plants. Both studies were on the same site in the USA, but used different experimental set-ups. VEGETATION COMMUNITY   VEGETATION ABUNDANCE Characteristic plant abundance (1 study): One replicated, randomized, paired, controlled, before-and-after study in an experimental wet basin in the USA found that sowing potential nurse plants alongside target sedge meadow species reduced the density of the target species overall, and of target grass-like species. Nurse plant addition sometimes affected the abundance of target forbs, depending on the presence of an invasive species and addition of sawdust to plots. Individual species abundance (2 studies): Two replicated, randomized, paired, controlled, before-and-after studies in wet basins in the USA quantified the effect of this action on the abundance of individual plant species. One study reported that sowing potential nurse plants typically had no significant effect on – and sometimes reduced – the biomass of sown porcupine sedge Carex hystericina, after 1–2 growing seasons. The other study reported varying effects of potential nurse plants on the abundance of individual target plant species, depending on factors such as diversity of the nurse crop and addition of sawdust to plots. VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, randomized, paired, controlled study in an experimental wet basin in the USA found that the presence of a high-diversity nurse crop reduced the germination rate of sown sedge meadow species. A low-diversity nurse crop had no significant effect on their germination rate. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3324https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3324Sun, 11 Apr 2021 12:42:28 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal non-woody plants: brackish/saline wetlands One study evaluated the effects, on vegetation, of introducing nurse plants to brackish/saline wetlands planted with emergent, non-woody plants. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, controlled study in an estuary in the USA reported that planting nurse plants had no effect on germination of sown arrowgrass Triglochin concinna. No seedlings were found around nurse plants or on bare sediment. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3325https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3325Sun, 11 Apr 2021 12:42:44 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal trees/shrubs: freshwater wetlandsWe found no studies that evaluated the effects, on vegetation, of introducing nurse plants to freshwater wetlands planted with trees/shrubs.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3326https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3326Sun, 11 Apr 2021 12:43:00 +0100Collected Evidence: Collected Evidence: Introduce nurse plants to aid focal trees/shrubs: brackish/saline wetlands One study evaluated the effects, on vegetation, of introducing nurse plants to brackish/saline wetlands planted with trees/shrubs. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Survival (1 study): One replicated, controlled study on a mudflat in the USA found that planting black mangrove Avicennia germinans seedlings into created stands of saltwort Batis maritima did not clearly affect their survival, over seven weeks, compared to planting into bare mud. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3327https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3327Sun, 11 Apr 2021 12:43:09 +0100Collected Evidence: Collected Evidence: Use fences or barriers to protect brackish/saline wetlands planted with non-woody plantsWe found no studies that evaluated the effects, on vegetation, of using fences or barriers to protect brackish/saline wetlands planted with emergent, non-woody plants.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3329https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3329Sun, 11 Apr 2021 13:14:53 +0100Collected Evidence: Collected Evidence: Use fences or barriers to protect planted brackish/saline wetlands planted with trees/shrubs One study evaluated the effects, on vegetation, of using fences or barriers to protect brackish/saline wetlands planted with trees/shrubs. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE Height (1 study): One replicated, paired, controlled study in exposed coastal sites in the USA found that red mangrove Rhizophora mangle propagules planted within full-length plastic shelters had grown taller than propagules planted without shelter in three of four comparisons, made 22–129 days after planting. OTHER Survival (1 study): One replicated, paired, controlled study in exposed coastal sites in the USA reported that full-length plastic shelters increased the survival rate of planted red mangrove Rhizophora mangle propagules over 4–8 months, but that full-length bamboo shelters and below-ground plastic shelters had no clear effect on survival. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3331https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3331Sun, 11 Apr 2021 13:15:17 +0100Collected Evidence: Collected Evidence: Remove vegetation that could compete with planted non-woody plants: brackish/saline wetlands One study evaluated the effects, on emergent non-woody vegetation planted in brackish/saline wetlands, of removing competing plants. The study was in the USA. VEGETATION COMMUNITY   VEGETATION ABUNDANCE   VEGETATION STRUCTURE   OTHER Germination/emergence (1 study): One replicated, randomized, paired, controlled study in an estuarine salt marsh in the USA found that thinning cover of the dominant plant before sowing dwarf saltwort Salicornia bigelovii seeds had no significant effect on saltwort seedling density, over the following two months. Survival (1 study): The same study found that thinning the dominant plant increased the survival rate of dwarf saltwort Salicornia bigelovii transplants over the first six months after planting. Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3333https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3333Sun, 11 Apr 2021 14:08:52 +0100Collected Evidence: Collected Evidence: Remove vegetation that could compete with planted trees/shrubs: brackish/saline wetlandsWe found no studies that evaluated the effects, on trees/shrubs planted in brackish/saline wetlands, of removing competing plants.   ‘We found no studies’ means that we have not yet found any studies that have directly evaluated this action during our systematic journal and report searches. Therefore we have been unable to assess whether or not the action is effective or has any harmful impacts. Please get in touch if you know of such a study for this action.Collected Evidencehttps%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3335https%3A%2F%2Fconservationevidencejournal.com%2Factions%2F3335Sun, 11 Apr 2021 14:09:29 +0100
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust