Succession in salt marshes – large-scale and long-term patterns after abandonment of grazing and drainage
-
Published source details
Rupprecht F., Wanner A., Stock M. & Jensen K. (2015) Succession in salt marshes – large-scale and long-term patterns after abandonment of grazing and drainage. Applied Vegetation Science, 18, 86-98.
Published source details Rupprecht F., Wanner A., Stock M. & Jensen K. (2015) Succession in salt marshes – large-scale and long-term patterns after abandonment of grazing and drainage. Applied Vegetation Science, 18, 86-98.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Reduce intensity of livestock grazing: brackish/salt marshes Action Link |
||
Exclude or remove livestock from historically grazed brackish/salt marshes Action Link |
-
Reduce intensity of livestock grazing: brackish/salt marshes
A site comparison study in 1988–2006 of coastal brackish and salt marshes in northern Germany (Rupprecht et al. 2015) reported that reducing grazing intensity (or stopping grazing entirely) affected vegetation development, but that the effect depended on multiple other factors. Grazing intensity was included as an important predictor in six of six statistical models of observed vegetation development (i.e. transitions between vegetation types over defined time periods). However, the effect of grazing intensity depended on other environmental conditions such as initial vegetation type, elevation and latitude (proxy for salinity and flooding frequency). In two models, for example, grazing intensity affected vegetation development at low but not high elevations. It is not possible to separate out results for reducing grazing intensity vs stopping grazing entirely. For example, moderately grazed plots showed similar responses to intensely grazed plots in some cases, but similar responses to ungrazed plots in others. Methods: In 1988, 1996, 2001 and 2006, plant community types were mapped across approximately 7,000 ha of brackish and salt marsh. Over time, grazing intensity was reduced in some areas, from intense (>10 sheep/ha) to moderate (≤3 sheep/ha) or zero. Where grazing was stopped, drainage systems were also abandoned but this had little effect on water levels. Statistical analyses were used to determine the influence of different factors, including grazing intensity, on changes in plant community types between the survey years.
(Summarised by: Nigel Taylor)
-
Exclude or remove livestock from historically grazed brackish/salt marshes
A site comparison study in 1988–2006 of coastal brackish and salt marshes in northern Germany (Rupprecht et al. 2015) reported that reducing grazing intensity (or stopping grazing entirely) affected vegetation development, but that the effect depended on multiple other factors. Grazing intensity was included as an important predictor in six of six statistical models of observed vegetation development (i.e. transitions between vegetation types over defined time periods). However, the effect of grazing intensity depended on other environmental conditions such as initial vegetation type, elevation and latitude (proxy for salinity and flooding frequency). In two models, for example, grazing intensity affected vegetation development at low but not high elevations. It is not possible to separate out results for reducing grazing intensity vs stopping grazing entirely. For example, moderately grazed plots showed similar responses to intensely grazed plots in some cases, but similar responses to ungrazed plots in others. Methods: In 1988, 1996, 2001 and 2006, plant community types were mapped across approximately 7,000 ha of brackish and salt marsh. Over time, grazing intensity was reduced in some areas, from intense (>10 sheep/ha) to moderate (≤3 sheep/ha) or zero. Where grazing was stopped, drainage systems were also abandoned but this had little effect on water levels. Statistical analyses were used to determine the influence of different factors, including grazing intensity, on changes in plant community types between the survey years.
(Summarised by: Nigel Taylor)
Output references
|