Secondary succession impairment in restored mangroves
-
Published source details
Rovai A.S., Soriano-Sierra E.J., Pagliosa P.R., Cintrón G., Schaeffer-Novelli Y., Menghini R.P., Coelho-Jr C., Horta P.A., Lewis R.R., Simonassi J.C., Alves J.A.A., Boscatto F. & Dutra S.J. (2012) Secondary succession impairment in restored mangroves. Wetlands Ecology and Management, 20, 447-459.
Published source details Rovai A.S., Soriano-Sierra E.J., Pagliosa P.R., Cintrón G., Schaeffer-Novelli Y., Menghini R.P., Coelho-Jr C., Horta P.A., Lewis R.R., Simonassi J.C., Alves J.A.A., Boscatto F. & Dutra S.J. (2012) Secondary succession impairment in restored mangroves. Wetlands Ecology and Management, 20, 447-459.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Directly plant trees/shrubs: brackish/saline wetlands Action Link |
![]() |
-
Directly plant trees/shrubs: brackish/saline wetlands
A replicated, paired, site comparison study in 2011 in three mangrove forests in southern Brazil (Rovai et al. 2012) reported that planted areas typically contained more, thinner, shorter woody stems than natural forests (both mature and regenerating) – but a similar number of tree species. Statistical significance was not assessed. Planted areas contained 4,500–22,037 woody stems/ha, with a basal area of 4–10 m2/ha, an average diameter of 3 cm, and average height of 2–3 m. Stem density and basal area were greater than in mature forests in at least two of three sites (mature density: 512–861 stems/m2; basal area: 4–7 m2/ha). Diameter and height were less than in mature forests in three of three sites (mature diameter: 9–15 cm; height: 6–9 m). The pattern of results was similar for comparisons with naturally regenerating forests. Planted and natural forests all contained 2–3 tree species. However, in two of three sites, planted areas were dominated by white mangrove Laguncularia racemosa (90–99% of stems) whereas natural areas were co-dominated by white mangrove (36–45% of stems) and siriúba Avicennia schaueriana (54–63% of stems). For data on abundance and structure of individual species, see original paper. Methods: In 2011, trees were counted, identified and measured in three areas in each of three sites: one area planted 10–12 years previously (details not reported), one area naturally regenerating for 10 years, and one mature stand. The planted and regenerating areas had, historically, been damaged by sediment excavation or pollution from a landfill site.
(Summarised by: Nigel Taylor)
Output references
|