Carbon storage by Carex stricta tussocks: a restorable ecosystem service?
-
Published source details
Lawrence B.A. & Zedler J.B. (2013) Carbon storage by Carex stricta tussocks: a restorable ecosystem service?. Wetlands, 33, 483-493.
Published source details Lawrence B.A. & Zedler J.B. (2013) Carbon storage by Carex stricta tussocks: a restorable ecosystem service?. Wetlands, 33, 483-493.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Use cutting to control problematic large trees/shrubs: freshwater marshes Action Link |
||
Remove surface soil/sediment: freshwater marshes Action Link |
||
Directly plant non-woody plants: freshwater wetlands Action Link |
-
Use cutting to control problematic large trees/shrubs: freshwater marshes
A site comparison study in 2008 of five sedge meadows in Illinois and Wisconsin, USA (Lawrence & Zedler 2013) found that a meadow restored by removing trees (and excess sediment, then planting tussock sedge Carex stricta) – contained more but smaller sedge tussocks than nearby natural meadows after 11–14 years. In four of four comparisons, the restored meadow contained a greater density of sedge tussocks (8.4 tussocks/m2) than natural meadows (4.5–5.6 tussocks/m2). Sedge tussocks were also smaller in the restored meadow than in the natural meadows. This was true in four of four comparisons for height (restored: 5 cm; natural: 11–18 cm), perimeter (restored: 39 cm; natural: 51–82 cm) and volume (restored: 560 cm3; natural: 2,342–6,604 cm3). The basal area of tussocks in the restored meadow was only 0.07 m2/m2, compared to 0.12–0.23 m2/m2 in the natural meadows (statistical significance not assessed). Methods: In 2008, sedge tussocks were surveyed in one restored and four natural sedge meadows (15–30 quadrats/meadow, each 1 m2). The restored meadow was formerly a wooded floodplain. Trees and accumulated sediment were removed, then plugs of tussock sedge planted 30 cm apart, between 1994 and 1997. The study does not distinguish between the effects of these interventions on any non-planted sedges.
(Summarised by: Nigel Taylor)
-
Remove surface soil/sediment: freshwater marshes
A site comparison study in 2008 of five sedge meadows in Illinois and Wisconsin, USA (Lawrence & Zedler 2013) found that a meadow restored by removing excess sediment (and trees, then planting tussock sedge Carex stricta) – contained more but smaller sedge tussocks than nearby natural meadows after 11–14 years. In four of four comparisons, the restored meadow contained a greater density of sedge tussocks (8.4 tussocks/m2) than natural meadows (4.5–5.6 tussocks/m2). Sedge tussocks were also smaller in the restored meadow than in the natural meadows. This was true in four of four comparisons for height (restored: 5 cm; natural: 11–18 cm), perimeter (restored: 39 cm; natural: 51–82 cm) and volume (restored: 560 cm3; natural: 2,342–6,604 cm3). The basal area of tussocks in the restored meadow was only 0.07 m2/m2, compared to 0.12–0.23 m2/m2 in the natural meadows (statistical significance not assessed). Methods: In 2008, sedge tussocks were surveyed in one restored and four natural sedge meadows (15–30 quadrats/meadow, each 1 m2). The restored meadow was formerly a wooded floodplain. Trees and accumulated sediment were removed, then plugs of tussock sedge planted 30 cm apart, between 1994 and 1997. The study does not distinguish between the effects of these interventions on any non-planted sedges.
(Summarised by: Nigel Taylor)
-
Directly plant non-woody plants: freshwater wetlands
A site comparison study in 2008 of five sedge meadows in Illinois and Wisconsin, USA (Lawrence & Zedler 2013) found that a restored meadow – planted with plugs of tussock sedge Carex stricta, after removing trees and excess sediment – contained more but smaller sedge tussocks than nearby natural meadows after 11–14 years. In four of four comparisons, the restored meadow contained a greater density of sedge tussocks (8.4 tussocks/m2) than natural meadows (4.5–5.6 tussocks/m2). Sedge tussocks were also smaller in the restored meadow than in the natural meadows. This was true in four of four comparisons for height (restored: 5 cm; natural: 11–18 cm), perimeter (restored: 39 cm; natural: 51–82 cm) and volume (restored: 560 cm3; natural: 2,342–6,604 cm3). The basal area of tussocks in the restored meadow was only 0.07 m2/m2, compared to 0.12–0.23 m2/m2 in the natural meadows (statistical significance not assessed). Methods: In 2008, sedge tussocks were surveyed in one restored and four natural sedge meadows (15–30 quadrats/meadow, each 1 m2). The restored meadow was formerly a wooded floodplain. Trees and accumulated sediment were removed, then plugs of tussock sedge planted 30 cm apart, between 1994 and 1997. The study does not distinguish between the effects of these interventions on any non-planted sedges.
(Summarised by: Nigel Taylor)
Output references
|