Study

Quantifying the effects of Entry Level Stewardship (ELS) on biodiversity at the farm scale: The Hillesden Experiment

  • Published source details Heard M.S., Botham M., Broughton R., Carvell C., Hinsley S., Woodcock B., Pywell R.F., Amy S., Bellamy P.E., Hill R.A., Hulmes S., Hulmes L., Meek W.R., Nowakowski M., Peyton J., Redhead J.W., Shore R.F. & Turk A. (2011) Quantifying the effects of Entry Level Stewardship (ELS) on biodiversity at the farm scale: The Hillesden Experiment. Natural England report, CEH report to Natural England, no. MA01031 (Project:RP00026).

Actions

This study is summarised as evidence for the following.

Action Category

Leave uncropped, cultivated margins or plots

Action Link
Butterfly and Moth Conservation

Plant wild bird seed or cover mixture

Action Link
Butterfly and Moth Conservation

Manage hedgerows to benefit wildlife (e.g. no spray, gap-filling and laying)

Action Link
Butterfly and Moth Conservation

Plant nectar flower mixture/wildflower strips

Action Link
Butterfly and Moth Conservation

Plant grass buffer strips/margins around arable or pasture fields

Action Link
Butterfly and Moth Conservation

Pay farmers to cover the costs of conservation measures (as in agri-environment schemes or conservation incentives)

Action Link
Butterfly and Moth Conservation
  1. Leave uncropped, cultivated margins or plots

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme, including uncropped cultivated margins, had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farming, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production, annually cultivated uncropped margins); standard ELS (1% land removed from production); conventional farming (see paper for other details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

  2. Plant wild bird seed or cover mixture

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme, including sowing wild bird seed mixtures, had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farming, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production, three 0.5-ha winter bird food patches sown); standard ELS (1% land removed from production, one 0.25-ha winter bird food patch sown); conventional farming (no winter bird food patches) (see paper for other details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

  3. Manage hedgerows to benefit wildlife (e.g. no spray, gap-filling and laying)

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme, including hedgerow management, had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farming, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production, hedges cut every two years); standard ELS (1% land removed from production, hedges cut every two years); conventional (hedges cut annually) (see paper for other details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

  4. Plant nectar flower mixture/wildflower strips

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme, including sowing nectar flower mixtures, had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farms, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production, field corners sown with four grasses and 25 non-woody broadleaved plants (forbs), nectar flower mixtures sown with four legumes); standard ELS (1% land removed from production); conventional farming (see paper for other details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

  5. Plant grass buffer strips/margins around arable or pasture fields

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme, including planting grass margins, had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farming, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production, flower-rich margins sown with five grasses and six non-woody broadleaved plants “forbs”); standard ELS (1% land removed from production, 6-m margins sown with four grasses); conventional (margins only around hedges and watercourses) (see paper for other details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

  6. Pay farmers to cover the costs of conservation measures (as in agri-environment schemes or conservation incentives)

    A replicated, randomized, paired, controlled study in 2005–2011 on an arable farm in Buckinghamshire, UK (Heard et al 2011) found that land managed under an agri-environment scheme had a higher abundance, but not species richness, of butterflies and micro-moths than conventional farming, but there was no difference in abundance or species richness of other moths. Butterfly abundance was higher under enhanced Entry-Level Stewardship (ELS) (5,400 individuals/60 ha) and standard ELS (2,000 individuals/60 ha) than under conventional farming (1,400 individuals/60 ha). Micro-moth abundance was also higher under enhanced ELS (79 individuals) than standard ELS (32 individuals) or conventional farming (20 individuals). However, the abundance of macro-moths and threatened moths was similar under enhanced ELS (macro: 126; threatened: 6 individuals), standard ELS (macro: 79; threatened: 5 individuals) and conventional farming (macro: 79; threatened: 6 individuals). Species richness of all groups was similar under enhanced ELS (macro: 20; micro: 11; threatened: 3 species), standard ELS (macro: 20; micro: 8; threatened: 2 species) and conventional farming (macro: 18; micro: 5; threatened: 2 species) (butterfly data not presented). In 2005, a 1,000-ha farm was divided into five 180-ha blocks. Three 60-ha areas/block were assigned to three treatments: enhanced ELS (5% land removed from production); standard ELS (1% land removed from production); and conventional farming (see paper for details). From May–August 2006–2011, butterflies were recorded four times/year on one 50-m transect/60-ha area, passing through all available habitats. In late-May 2007–2011 and late-July 2006–2011 moths were surveyed using Robinson light traps. One block was surveyed/night, with one trap/treatment.

    (Summarised by: Andrew Bladon)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust