Study

Early faunal successional patterns in artificial reefs used for restoration of impacted biogenic habitats

  • Published source details Fariñas-Franco J.M. & Roberts D. (2014) Early faunal successional patterns in artificial reefs used for restoration of impacted biogenic habitats. Hydrobiologia, 727, 75-94.

Actions

This study is summarised as evidence for the following.

Action Category

Translocate habitat-forming (biogenic) species - Translocate reef- or bed-forming molluscs

Action Link
Subtidal Benthic Invertebrate Conservation
  1. Translocate habitat-forming (biogenic) species - Translocate reef- or bed-forming molluscs

    A replicated, controlled study in 2010–2011 of 12 plots in Strangford Lough, Northern Ireland, UK (Fariñas-Franco & Roberts 2014 – same experimental set-up as Fariñas-Franco et al. 2013) found that over a year after translocating habitat-forming horse mussel Modiolus modiolus, overall invertebrate species richness and diversity increased, and invertebrate community composition changed, but with no differences between mussels translocated onto scallop shells or onto natural seabed. In plots where scallop shells had been added, either as elevated or flattened piles, and in plots where no shells were added, species richness and diversity (presented as indices) increased following translocation of horse mussels, but without differences between treatments. Community composition changed over time, but after a year was similar across treatments (data presented as graphical analyses). In addition, total abundance of invertebrates increased for the first six months but decreased between six and 12 months in all treatments. Over a year, abundance was higher in plots with elevated scallop shells (5–2,350 individuals) than in plots with flattened shells (2–1,370 individuals) or without shells (3–780 individuals). In November 2009–March 2010, sixteen tonnes of king scallop Pecten maximus shells were deployed in bags at four sites (17–19 m depth) to recreate suitable habitat for horse mussel reefs. Each site was divided into an elevated plot (8 m2; shell rising 1 m above seabed) and a flattened plot (4 m2; 0.5 m above seabed). Divers translocated live adult horse mussels from nearby natural mussel patches within the Lough into each plot and at four adjacent natural seabed plots without scallop shells (500 mussels/plot). One, six and 12 months after translocation, animals were identified and counted from one 0.5 × 0.5 m quadrat/plot. Strangford Lough is a marine protected area where fishing is prohibited.

    (Summarised by: Anaëlle Lemasson & Laura Pettit)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust