Study

Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages

  • Published source details Panettieri M., Berns A.E., Knicker H., Murillo J.M. & Madejón E. (2015) Evaluation of seasonal variability of soil biogeochemical properties in aggregate-size fractioned soil under different tillages. Soil and Tillage Research, 151, 39-49.

Actions

This study is summarised as evidence for the following.

Action Category

Soil: Use reduced tillage in arable fields

Action Link
Mediterranean Farmland

Soil: Use no tillage in arable fields

Action Link
Mediterranean Farmland
  1. Soil: Use reduced tillage in arable fields

    A replicated, randomized, controlled study in 1991–2010 in rainfed wheat-sunflower-pea fields near Seville, Spain (same study as (16,34)), found more organic matter, fewer soil organisms, and more aggregation in soils with reduced tillage, compared to conventional tillage. Organic matter: More organic carbon was found in soils with reduced tillage, compared to conventional tillage, in four of ten comparisons (6–9 vs 5–7 g C/kg soil). Soil organisms: Less microbial biomass (measured as carbon) was found in soils with reduced tillage, compared to conventional tillage, in one of ten comparisons (in autumn, 1–2 mm aggregates: 67 vs 107 g microbial C/kg organic C). Soil erosion and aggregation: More large aggregates were found in soils with reduced tillage, compared to conventional tillage, in autumn (1–2 mm aggregates: 18 vs 16% of soil weight; 2–5 mm: 35 vs 31%), and fewer small aggregates were found in one of three comparisons, in autumn (0.25–0.5 mm aggregates: 14 vs 19% of soil weight). However, no differences in aggregate distributions were found in spring (data reported for five aggregate sizes). Methods: Reduced tillage or conventional tillage was used on three plots each (300 m2 plots). A mouldboard plough (25–30 cm depth), a cultivator (15–20 cm depth, two passes), and a disc harrow (5–7 cm depth) were used for conventional tillage. A chisel plough (15–20 cm depth, every other year) and a disc harrow (5–7 cm depth) were used for reduced tillage, and crop residues were retained (>60% cover). Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil samples were collected in spring and autumn 2010 (0–10 cm depth, five samples/plot).

     

  2. Soil: Use no tillage in arable fields

    A replicated, randomized, controlled study in 2004–2010 in rainfed wheat-sunflower-pea fields near Seville, Spain (same study as (13,33)), found more organic matter and more soil aggregation in soils with no tillage, compared to conventional tillage. Organic matter: More organic carbon was found in soils with no tillage, compared to conventional tillage, in four of ten comparisons (6–10 vs 5–6 g C/kg soil). Soil organisms: Similar amounts of microbial biomass (measured as carbon) were found in soils with no tillage or conventional tillage (20–75 vs 27–87 g microbial C/kg organic C). Soil erosion and aggregation: More large aggregates were found in soils with no tillage, compared to conventional tillage, in autumn, in one of two comparisons (1–2 mm aggregates: 20 vs 17% of soil weight), and fewer small aggregates were found in autumn, in one of three comparisons (<0.25 mm aggregates: 15 vs 21% of soil weight). However, no differences in aggregate distributions were found in spring (data reported for five aggregate sizes). Methods: No tillage or conventional tillage was used on three plots each (200 m2 plots). A mouldboard plough (25–30 cm depth), a cultivator (15–20 cm depth, two passes), and a disk harrow (15 cm depth) were used for conventional tillage. A seed drill and pre-emergence herbicide were used for no tillage, and crop residues were retained (>60% cover). Wheat, sunflowers, and peas were grown in rotation. Wheat was fertilized, but sunflowers and peas were not. Soil samples were collected in spring and autumn 2010 (0–10 cm depth, five samples/plot).

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust