Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice
-
Published source details
Bhattacharyya P., Roy K.S. & Neogi S. (2012) Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutrient Cycling in Agroecosystems, 94, 273-285.
Published source details Bhattacharyya P., Roy K.S. & Neogi S. (2012) Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutrient Cycling in Agroecosystems, 94, 273-285.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Amend the soil with manures and agricultural composts Action Link |
![]() |
|
Amend the soil with fresh plant material or crop remains Action Link |
![]() |
-
Amend the soil with manures and agricultural composts
A controlled, randomized, replicated experiment in 2001-2011 on sandy clay loam in India (Bhattacharyya et al. 2012) found 34% higher soil organic carbon and 53% more total carbon (including inorganic carbon) under rice straw plus green manure (using Sesbania aculeata) compared to the control (5.2 g/kg). Microbial biomass (measured by quantities of carbon) was highest under farmyard manure plus green manure (250 mg/kg), followed by farmyard manure (233 mg/kg) compared to the control (153 mg/kg). Rice yield was highest under farmyard manure plus green manure (3.51 t/ha), followed by rice straw plus green manure (3.35 t/ha), farmyard manure alone (3.25 t/ha), and green manure alone (3.09 t/ha), compared to the control (1.93 t/ha). Treatments were applied to plots of paddy 20 days before plots were planted with transplanted rice Oryza sativa var. Geetanjali seedlings. Treatments included: control (no amendment), farmyard manure, green manure, farmyard manure plus green manure, and rice straw plus green manure (both incorporated into the soil 20 days before seedling transplantation). There were three replications. Soils were sampled at the beginning and end of the experiment to 60 cm depth.
-
Amend the soil with fresh plant material or crop remains
A controlled, randomized, replicated experiment in 2001-2011 on sandy clay loam in India (Bhattacharyya et al. 2012) found 43.5% higher soil carbon under rice straw plus green manure (using Sesbania aculeata) compared to the control (5.16 g/kg). Microbial biomass (measured by quantities of carbon) was highest under farmyard manure plus green manure (250 mg/kg), followed by farmyard manure alone (233 mg/kg), compared to the control (153 mg/kg). Rice yield was highest under farmyard manure plus green manure (3.51 t/ha), followed by rice straw plus green manure (3.35 t/ha), farmyard manure alone (3.25 t/ha), and green manure alone (3.09 t/ha), compared to the control (1.93 t/ha). Treatments were applied to plots of paddy 20 days before plots were planted with transplanted rice Oryza sativa (Geetanjali variety) seedlings. Treatments included: no amendment (control), farmyard manure, green manure, farmyard manure plus green manure, and rice straw plus green manure (both incorporated into the soil 20 days before seedling transplantation). There were three replications. Soils were sampled at the beginning and end of the experiment to 60 cm depth.
Output references
|