Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems
-
Published source details
Witt C., Cassman K.G., Olk D.C., Biker U., Liboon S.P., Samson M.I. & Ottow J.C.G. (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 225, 263-278.
Published source details Witt C., Cassman K.G., Olk D.C., Biker U., Liboon S.P., Samson M.I. & Ottow J.C.G. (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 225, 263-278.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Amend the soil with fresh plant material or crop remains Action Link |
||
Amend the soil with formulated chemical compounds Action Link |
||
Use crop rotation Action Link |
-
Amend the soil with fresh plant material or crop remains
An experiment in 1994-1995 on silty clay in the Philippines (Witt et al. 2000) found 13-20% higher grain yields under early compared to late crop remains incorporation, without nitrogen or with low rates applied. There were two crop systems: continuous rice Oryza sativa, and a maize Zea mays-rice rotation. Maize was grown in the dry season, and rice in the dry. Within each 12 x 25 m cropping system were four 12 x 8 m nitrogen treatments: control (no nitrogen fertilizer), low (30 kg N/ha), medium (40 kg N/ha) and high application (50 kg N/ha). Within these were two 6 x 8 m sub-treatments: early (63 days before rice seedling transplanting) or late crop remains (rice or maize) incorporation (14 days before transplanting). Soils were sampled to 15 cm depth.
-
Amend the soil with formulated chemical compounds
An experiment in 1994-1995 on silty clay in the Philippines (Witt et al. 2000) found higher grain yields under high (7.15 t/ha) compared to low (6.15) or no (2.95 t/ha) nitrogen fertilizer application. There were two crop systems: continuous rice Oryza sativa, and a maize Zea mays-rice rotation. Maize was grown in the dry season, and rice in the dry. Within each 12 x 25 m cropping system were four 12 x 8 m nitrogen treatments: control (no nitrogen fertilizer), low (30 kg N/ha), medium (40 kg N/ha) and high application (50 kg N/ha). Within these were two 6 x 8 m sub-treatments: early (63 days before rice seedling transplanting) or late crop residue (rice or maize) incorporation (14 days before transplanting). Soils were sampled to 15 cm depth.
-
Use crop rotation
An experiment in 1994-1995 on silty clay in the Philippines (Witt et al. 2000) found 33-41% higher available carbon and nitrogen under the rotation compared to continuous rice Oryza sativa, resulting in 11-12% less carbon and 5-12% less nitrogen stored in the soil compared to under continuous rice. There were two crop systems: continuous rice Oryza sativa, and a maize Zea mays-rice rotation. Maize was grown in the dry season, and rice in the dry. Within each 12 x 25 m cropping system were four 12 x 8 m nitrogen treatments: control (no nitrogen fertilizer), low (30 kg N/ha), medium (40 kg N/ha) and high application (50 kg N/ha). Within these were two 6 x 8 m sub-treatments: early (63 days before rice seedling transplanting) or late crop residue (rice or maize) incorporation (14 days before transplanting). Soils were sampled to 15 cm depth.
Output references
|