Study

Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation

  • Published source details Lupwayi N. Z., Rice W. A. & Clayton G. W. (1999) Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Canadian Journal of Soil Science, 79, 273-280.

Actions

This study is summarised as evidence for the following.

Action Category

Use crop rotation

Action Link
Soil Fertility

Change tillage practices

Action Link
Soil Fertility
  1. Use crop rotation

    A randomized, replicated experiment, established in 1992 on loam/silt-loam soil at Fort Vermilion, Canada (Lupwayi et al. 1999) found higher soil microbial biomass in rotations with legume crops (red clover Trifolium pratense: 593.99 mg/kg soil, field pea Pisum sativum: 448.40 mg/kg soil) compared to fields left fallow (322.68 mg/kg soil) or cropped continuously with wheat Triticum aestivum (432.25 mg/kg soil). The trial treatments were zero tillage and conventional tillage (3-4 mechanical cultivations/year), combined with four different crop rotations: wheat-field peas, wheat-red clover, wheat-summer fallow, or continuous wheat. The trial included three replicate plots of each treatment combination, and 10 soil samples were taken from each plot during wheat cropping and mixed before analysis.

     

  2. Change tillage practices

    This replicated, randomized field trial, established in 1992 on loam – silt-loam soil in Alberta, Canada (Lupwayi et al. 1999) found that management with zero tillage encouraged greater soil microbial biomass (516.36 mg/kg soil), compared with conventional tillage (382.30 mg/kg soil). Rotation with legume crops also enhanced soil microbial biomass (593.99 mg/kg soil (red clover Trifolium pratense), 448.40 mg/kg soil (field pea Pisum sativum)), relative to those left to fallow (322.68 mg/kg soil) or cropped continuously (432.25 mg/kg soil). The trial treatments were zero tillage and conventional tillage (3-4 mechanical cultivations per year), combined with four different crop rotations preceding the wheat Triticum aestivum crop planted prior to sampling between 1995 and 1997: field peas, red clover, summer fallow, or continuous wheat. The trial included three replicate plots of each treatment combination, and 10 soil samples were taken from each plot and mixed before analysis.

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust