Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment
-
Published source details
Singh B. & Malhi S.S. (2006) Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil and Tillage Research, 85, 143-153.
Published source details Singh B. & Malhi S.S. (2006) Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil and Tillage Research, 85, 143-153.
Actions
This study is summarised as evidence for the following.
Action | Category | |
---|---|---|
Retain crop residues Action Link |
![]() |
|
Change tillage practices Action Link |
![]() |
-
Retain crop residues
A replicated site comparison in 1984-1989 on loam soils in Alberta, Canada (Singh & Malhi 2006), found lower soil resistance (942 kPa) when residues were retained compared to removing residue (1,195 kPa) in no-tillage plots. Residue management had mixed effects on the proportion of larger soil aggregates within the soil and did not affect soil density or water infiltration. Treatments were replicated four times and included no-tillage (direct drilling) tillage with rototilling (to 10 cm depth), and two residue levels: straw removed and straw retained. Plots were 6 x 2.7 m. The crop rotation was barley Hordeum vulgare/rape Brassica napus. Soil density, penetration resistance, particle aggregation and water infiltration were measured.
-
Change tillage practices
A replicated site comparison in 1984-1989 on loam soils in Alberta, Canada (Singh & Malhi, 2006) found that regardless of residue management, soil density between 0-15 cm depth was higher under no-tillage (1.35 Mg/m3 av.) compared to rototilled (1.19 Mg/m3 av.) plots. Soil resistance was higher under no-tillage (1195 kPa av.) than rototilled plots (703 kPa av.); however residue retention decreased resistance in no-tillage plots (942 kPa av.). The wind-erodible fraction of soil aggregates (<1 mm) was lowest under no-tillage (18%) and largest under rototilling (39%). Water infiltration was 33% lower under no-tillage than rototilled plots. In four replicates were two tillage systems: no-tillage (direct drilling), tillage with rototilling (10 cm depth); and two residue levels: straw removed and straw retained. Plots were 6 x 2.7 m. The crop rotation was barley Hordeum vulgare/rape Brassica napus. Soil samples were taken from each plot. Soil density, penetration resistance, particle aggregation and water infiltration were measured.
Output references
|