Study

No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil

  • Published source details Jiao Y., Whalen J.K. & Hendershot W.H. (2006) No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma, 134, 24-33.

Actions

This study is summarised as evidence for the following.

Action Category

Amend the soil with manures and agricultural composts

Action Link
Soil Fertility

Use crop rotation

Action Link
Soil Fertility

Change tillage practices

Action Link
Soil Fertility
  1. Amend the soil with manures and agricultural composts

    A randomized, replicated experiment in 2003 on sandy-loam soil in Quebec, Canada (Jiao et al. 2006) found that the application of 30 and 45 Mg/ha/y of composted manure produced a higher proportion of large soil aggregates (35% and 41% respectively) than inorganic fertilizer application. There were four replicates of two tillage systems: conventional (tandem disk to 10 cm soil depth, mouldboard plough 20 cm) and no-tillage. Within these were maize Zea mays, soybean Glycine max/maize and maize/soybean rotations (in 20 x 24 m plots) and then within these were four fertilizer treatments: inorganic fertilizers, composted cattle manure at 30 or 45 Mg/ha/y, and the two mixed together (in 20 x 6 m areas of plots). Soil samples (to 10 cm depth) were taken after crop harvest. Soil carbon, nitrogen, phosphorus and the size of aggregates were measured.

     

  2. Use crop rotation

    A randomized, replicated experiment in 2003 on a sandy-loam soil in Quebec, Canada (Jiao et al. 2006) found similar sized soil aggregates in continuous maize Zea mays (1.89 mm) and in a soybean Glycine max-maize rotation (1.90 mm). There were four replicates of two tillage systems: conventional; and no-tillage. Within these were continuous maize, soybean -maize, and maize-soybean rotations (in 20 x 24 m plots). Within these were four fertilizer treatments: inorganic fertilizers, composted cattle manure, and the two mixed together (tested in 20 x 6 m plot sections). Soil samples (to 10 cm depth) were taken after crop harvest from the maize phase in October 2003. The size of soil aggregates was measured using a wet-sieving procedure. Soil carbon, nitrogen, and phosphorus were measured using finely ground soil samples.

     

  3. Change tillage practices

    A randomized, replicated experiment in 2003 on a sandy-loam soil in Quebec, Canada (Jiao et al. 2006) found that adopting no-tillage increased soil aggregation (accumulation of soil particles) and nutrient retention under maize Zea mays production. The proportion of larger aggregates (soil particles larger than 2 mm) was greater under no-tillage (37.2%) compared to conventional tillage (31%). C, N and P concentrations were three, five and eight times higher (respectively) in smaller aggregates (0.25-0.053 mm) than larger aggregates (>2 mm). There were four replicates of two tillage systems: conventional (tandem disk 10 cm deep, mouldboard plough 20 cm) and no-tillage. Within these were maize Zea mays, soybean Glycine max/maize, maize/soybean rotations (20x 24 m). Within these were four fertilizer treatments: inorganic fertilizers, composted cattle manure, and the two mixed together (20 x 6 m plots). Soil samples (10 cm) were taken after crop harvest. Soil carbon, nitrogen, phosphorus and size of aggregates were measured.

     

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust