Study

Optimising reintroduction success by delayed dispersal: is the release protocol important for hare-wallabies

  • Published source details Hardman B. & Moro D. (2006) Optimising reintroduction success by delayed dispersal: is the release protocol important for hare-wallabies. Biological Conservation, 128, 403-411.

Actions

This study is summarised as evidence for the following.

Action Category

Provide supplementary water to increase reproduction/survival

Action Link
Terrestrial Mammal Conservation

Release captive-bred mammals into fenced areas

Action Link
Terrestrial Mammal Conservation

Release translocated/captive-bred mammals in areas with invasive/problematic species eradication/control

Action Link
Terrestrial Mammal Conservation

Provide supplementary food during/after release of captive-bred mammals

Action Link
Terrestrial Mammal Conservation

Use holding pens at release site prior to release of captive-bred mammals

Action Link
Terrestrial Mammal Conservation
  1. Provide supplementary water to increase reproduction/survival

    A controlled, before-and-after study in 2001 in five shrubland sites in Western Australia (Hardman & Moro 2006) found that most released captive-bred banded hare-wallabies Lagostrophus fasciatus and rufous hare-wallabies Lagorchestes hirsutus provided with supplementary water, along with supplementary food and predator control, survived at least two months after being released into a fenced peninsula. After 1-2 months, 10 of 16 rufous hare-wallabies and 12 of 18 banded hare-wallabies were still alive. Overall both rufous and banded hare-wallabies recaptured had similar body conditions to when they were released, although rufous hare-wallabies lost 12% of body condition while waiting for release in holding pens (data presented as a body condition index; see paper for details). Sixteen captive-bred rufous hare-wallabies and 18 captive-bred banded hare-wallabies were released at five sites in August 2001. Six rufous and nine banded-hare wallabies were placed in separate 3-ha enclosures with electrified fencing for 10–19 days before being released. Remaining animals were released directly into the wild. Supplementary water and food (kangaroo pellets, alfalfa) were made available to all hare-wallabies (those kept in holding pens and those not; duration of feeding not given). Hare-wallabies were monitored by radio tracking (once/week for 1.5 years after release) and live-trapping (at 4 and 8-9 weeks after release). Release areas were within a fenced peninsula where multiple introduced mammals were controlled or eradicated.

    (Summarised by: Ricardo Rocha)

  2. Release captive-bred mammals into fenced areas

    A controlled before-and-after study in 2001 in five shrubland sites in Western Australia, Australia (Hardman & Moro 2006) found that most captive-bred banded hare-wallabies Lagostrophus fasciatus and rufous hare-wallabies Lagorchestes hirsutus released into a fenced peninsula (with predator control, supplementary food and water and, in some cases, holding pens prior to release), survived at least two months, although rufous hare-wallabies lost body condition while awaiting release in holding pens. After 1-2 months, 10 of 16 rufous hare-wallabies and 12 of 18 banded hare-wallabies were still alive. Overall both rufous and banded hare-wallabies recaptured had similar body conditions to when they were released, although rufous hare-wallabies lost 12% of body condition while waiting for release in holding pens (data presented as a body condition index; see paper for details). Sixteen captive-bred rufous hare-wallabies and 18 captive-bred banded hare-wallabies were released at five sites in August 2001. Six rufous and nine banded-hare wallabies were placed in separate 3-ha enclosures with electrified fencing for 10–19 days before being released. Remaining animals were released directly into the wild. Supplementary food (kangaroo pellets, alfalfa) and water were made available to all hare-wallabies (those kept in holding pens and those not; duration of feeding not given). Hare-wallabies were monitored by radio tracking (once/ week for 1.5 years after release) and live-trapping (at 4 and 8-9 weeks after release). Release areas were within a fenced peninsula where multiple introduced mammals were controlled (cats Felis catus and goats Capra hircus) or eradicated (red fox Vulpes vulpes).

    (Summarised by: Ricardo Rocha)

  3. Release translocated/captive-bred mammals in areas with invasive/problematic species eradication/control

    A controlled, before-and-after study in 2001 in five shrubland sites in Western Australia, Australia (Hardman & Moro 2006) found that following control of introduced mammals, most captive-bred banded hare-wallabies Lagostrophus fasciatus and rufous hare-wallabies Lagorchestes hirsutus survived at least two months after being released into a fenced peninsula (some from holding pens and all with supplementary food and water provided). After 1-2 months, 10 of 16 rufous hare-wallabies and 12 of 18 banded hare-wallabies were still alive. Overall both rufous and banded hare-wallabies recaptured had similar body conditions to when they were released, although rufous hare-wallabies lost 12% of their body condition while waiting for release in holding pens (data presented as a body condition index; see paper for details). Sixteen captive-bred rufous hare-wallabies and 18 captive-bred banded hare-wallabies were released at five sites in August 2001. Six rufous hare-wallabies and nine banded-hare wallabies were placed in separate 3-ha enclosures with electrified fencing for 10–19 days before being released. Remaining animals were released directly into the wild. Supplementary food (kangaroo pellets, alfalfa) and water were made available to all hare-wallabies (those kept in holding pens and those not; feeding duration not given). Hare-wallabies were monitored by radio tracking (once/week for 1.5 years after release) and live-trapping (at 4 and 8-9 weeks after release). Release areas were within a fenced peninsula where multiple introduced mammals were controlled (cats Felis catus and goats Capra hircus) or eradicated (red fox Vulpes vulpes).

    (Summarised by: Ricardo Rocha)

  4. Provide supplementary food during/after release of captive-bred mammals

    A controlled, before-and-after study in 2001 in five shrubland sites in Western Australia, Australia (Hardman & Moro 2006) found that most captive-bred banded hare-wallabies Lagostrophus fasciatus and rufous hare-wallabies Lagorchestes hirsutus provided with supplementary food and water (and in some cases having been in holding pens) survived at least two months after being released into a fenced peninsula where predators had been controlled. After 1-2 months, 10 of 16 rufous hare-wallabies and 12 of 18 banded hare-wallabies were still alive. Overall both rufous and banded hare-wallabies recaptured had similar body conditions to when they were released, although rufous hare-wallabies lost 12% of body condition while waiting for release in holding pens (data presented as a body condition index; see paper for details). Sixteen captive-bred rufous hare-wallabies and 18 captive-bred banded hare-wallabies were released at five sites in August 2001. Six rufous and nine banded-hare wallabies were placed in separate 3-ha enclosures with electrified fencing for 10–19 days before being released. Remaining animals were released directly into the wild. Supplementary food (kangaroo pellets, alfalfa) and water were made available to all hare-wallabies (those in holding pens and those not; duration of feeding not given). Hare-wallabies were monitored by radio tracking (once per week for 1.5 years after release) and live-trapping (at 4 and 8-9 weeks after release). Release areas were within a fenced peninsula where multiple introduced mammals were controlled or eradicated.

    (Summarised by: Ricardo Rocha)

  5. Use holding pens at release site prior to release of captive-bred mammals

    A controlled, before-and-after study in 2001 in five shrubland sites in Western Australia, Australia (Hardman & Moro 2006) found that captive-bred banded hare-wallabies Lagostrophus fasciatus and rufous hare-wallabies Lagorchestes hirsutus, some of which were placed in holding pens prior to release into a fenced peninsula (with predator controls, supplementary food and water), survived at least two months after being released, although rufous hare-wallabies lost body condition while awaiting release in holding pens. After 1-2 months, 10 of 16 rufous hare-wallabies and 12 of 18 banded hare-wallabies were still alive. Overall both rufous and banded hare-wallabies recaptured had similar body conditions to when they were released regardless of whether they were initially put in holding pens, although rufous hare-wallabies lost 12% of body condition while waiting for release in holding pens (data presented as a body condition index; see paper for details). Sixteen captive-bred rufous hare-wallabies and 18 captive-born banded hare-wallabies were released at five sites in August 2001. Six rufous hare-wallabies and nine banded-hare wallabies were placed in separate 3-ha enclosures with electrified fencing for 10–19 days before release. Remaining animals were released directly into the wild. Supplementary food (kangaroo pellets, alfalfa) and water were made available to all hare-wallabies (those kept in holding pens and those not; feeding duration not given). Hare-wallabies were monitored by radio tracking (once/week for 1.5 years after release) and live-trapping (at 4 and 8-9 weeks after release). Release areas were within a fenced peninsula where multiple introduced mammals were controlled or eradicated.

    (Summarised by: Ricardo Rocha)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust