Study

Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a Swiss arable landscape

  • Published source details Aviron S., Herzog F., Klaus I., Schuepbach B. & Jeanneret P. (2011) Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a Swiss arable landscape. Restoration Ecology, 19, 500-508.

Actions

This study is summarised as evidence for the following.

Action Category

Plant nectar flower mixture/wildflower strips

Action Link
Butterfly and Moth Conservation

Pay farmers to cover the costs of conservation measures (as in agri-environment schemes or conservation incentives)

Action Link
Butterfly and Moth Conservation
  1. Plant nectar flower mixture/wildflower strips

    A replicated, site comparison study in 2000–2004 in an arable landscape in the Swiss Plateau, Switzerland (Aviron et al. 2011) found that wildflower strips contained a higher abundance and species richness of generalist but not specialist butterflies than other arable habitats. For generalist butterflies, both the average abundance (24.0 individuals) and species richness (7.0 species) were higher in wildflower strips than in conventional grassland (abundance: 12.0, richness: 5.0) or wheat, maize and root crop fields (abundance: 2.6–3.7, richness: 1.8–2.2). However, for specialist butterflies there was no significant difference in abundance or richness (wildflower: abundance = 2.4, richness = 1.0; grassland: abundance = 0.6, richness = 0.5; crops: abundance = 0.4, richness = 0.2). Species richness of generalists was also higher in fields with more wildflower strips in the surrounding area (data presented as model results). From 1994–2004, within an 822-ha arable landscape, wildflower strips were sown with buckwheat as ground cover, and 30–40 wild plant species. They received no fertilizer or pesticide, and were not cut between 15 March and 1 October. In 2000, 2002 and 2004, butterflies were surveyed in five habitats: wildflower strips, conventional grassland, wheat fields, root crops and maize fields. Each year, 37–39 fields were sampled with 5 × 10-minute surveys every 2–3 weeks between May and August. The surrounding land cover (200-m radius) was mapped from aerial photographs. Generalist and specialist species were determined based on the number of caterpillar food plants.

    (Summarised by: Andrew Bladon)

  2. Pay farmers to cover the costs of conservation measures (as in agri-environment schemes or conservation incentives)

    A replicated, site comparison study in 2000–2004 in an arable landscape in the Swiss Plateau, Switzerland (Aviron et al. 2011) found that wildflower strips which farmers were paid to create contained a higher abundance and species richness of generalist but not specialist butterflies than other arable habitats. For generalist butterflies, both the average abundance (24.0 individuals) and species richness (7.0 species) were higher in wildflower strips than in conventional grassland (abundance: 12.0; richness: 5.0) or wheat, maize and root crop fields (abundance: 2.6–3.7, richness: 1.8–2.2). However, for specialist butterflies there was no significant difference in abundance or richness (wildflower: abundance = 2.4; richness = 1.0; grassland: abundance = 0.6, richness = 0.5; crops: abundance = 0.4; richness = 0.2). Species richness of generalists was also higher in fields with more wildflower strips in the surrounding area (data presented as model results). From 1994–2004, within an 822-ha arable landscape, wildflower strips were sown with buckwheat as ground cover, and 30–40 wild plant species. They received no fertilizer or pesticide, and were not cut between 15 March and 1 October. In 2000, 2002 and 2004, butterflies were surveyed in five habitats: wildflower strips, conventional grassland, wheat fields, root crops and maize fields. Each year, 37–39 fields (6–11 fields/habitat) were sampled with 5 × 10-minute surveys every 2–3 weeks between May and August. The surrounding land cover (200-m radius) was mapped from aerial photographs. Generalist and specialist species were determined based on the number of caterpillar food plants.

    (Summarised by: Andrew Bladon)

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust