Action

Use antifungal skin bacteria or peptides to reduce chytridiomycosis infection

How is the evidence assessed?
  • Effectiveness
    29%
  • Certainty
    50%
  • Harms
    10%

Study locations

Key messages

  • Three of four randomized, replicated, controlled studies in the USA found that adding antifungal bacteria to the skin of salamanders or frogs exposed to the chytrid fungus did not reduce chytridiomycosis infection rate or death. One found that adding antifungal bacteria to frogs prevented infection and death. One randomized, replicated, controlled study in the USA found that adding antifungal skin bacteria to soil significantly reduced chytridiomycosis infection rate of red-backed salamanders.
  • One randomized, replicated, controlled study in Switzerland found that treatment with antimicrobial skin peptides before or after infection with chytridiomycosis did not significantly increase survival of common toads.
  • Three randomized, replicated, controlled studies in the USA found that adding antifungal skin bacteria to chytrid infected amphibians reduced weight loss.

 

About key messages

Key messages provide a descriptive index to studies we have found that test this intervention.

Studies are not directly comparable or of equal value. When making decisions based on this evidence, you should consider factors such as study size, study design, reported metrics and relevance of the study to your situation, rather than simply counting the number of studies that support a particular interpretation.

Supporting evidence from individual studies

  1. A randomized, replicated, controlled study in a laboratory in California, USA (Harris et al. 2009) found that adding antifungal bacteria (Janthinobacterium lividum) to the skins of mountain yellow-legged frog Rana muscosa prevented death from chytridiomycosis. Infected frogs treated with the antifungal skin bacteria all survived, gained 33% body mass and had no chytrid zoospores on their skin. In contrast, five of six exposed to chytrid zoospores alone lost weight and died; the sixth had severe chytridiomycosis. Treatment with Janthinobacterium lividum increased colonization by the skin bacteria and did not result in reduced growth or death. There were three treatments each with six frogs: exposure to chytrid zoospores (300 zoospores/15 ml for 24 h); exposure to antifungal skin bacteria (26 x 106 cells/ml for 30 min) and exposure to skin bacteria and 48 hours later chytrid zoospores. There were also 10 untreated control frogs. Before treatments, animals were rinsed in 3% hydrogen peroxide and sterile Provosoli medium to reduce natural skin bacteria. Frogs were weighed and tested for antifungal skin bacteria and chytrid before and every two weeks after treatment until day 139.

    Study and other actions tested
  2. A randomized, replicated, controlled study in a laboratory in Virginia, USA (Harris et al. 2009) found that the severity, but not the infection rate, of chytridiomycosis was reduced by adding chytrid-inhibiting skin bacteria to the skin of red-backed salamanders Plethodon cinereus. Infection rate did not differ significantly between those with added bacteria (Pseudomonas reactans; 80%) and those with chytrid alone (60%). Numbers of zoospore equivalents on infected individuals were also similar (with bacteria: 6; chytrid alone: 10). However, by day 46, salamanders with the bacteria had lost significantly less body mass (15%) than those with chytrid alone (30%) and a similar amount to controls (bacteria or medium alone: 8%). Following inoculation with skin bacteria, 89% of 18 individuals tested positive for the bacteria. Individuals were randomly assigned to one of four exposure treatments: anti-chytrid skin bacteria, chytrid zoospores, bacteria followed by chytrid zoospores three days later or solution alone. Sample sizes were 5, 20, 20 and 5 respectively. Individuals were tested for chytrid on day 1 and 14 and for skin bacteria on day 1 and 10. Salamanders were bathed with 5 ml of solution containing bacteria (3 x 109 cells/ml) for two hours and/or a solution with chytrid (3 x 106 zoospores/5 ml) for 24 hours.

    Study and other actions tested
  3. A randomized, replicated, controlled study in a laboratory in the USA (Becker et al. 2011) found that although the chytrid-inhibiting skin bacteria Janthinobacterium lividum colonized skin temporarily, it did not reduce or delay death of chytrid infected Panamanian golden frogs Atelopus zeteki. All infected frogs died within four months, whereas all control frogs survived. Although mortality and overall chytrid load did not differ between frogs exposed and not exposed to the bacteria, at death those exposed had significantly lower numbers of chytrid zoospores (1.5 x 105 vs 1.3 x 106). Colonization by the bacteria was successful on 95% of frogs. However, by day 39 bacterial cell counts had declined (<2.8 x 105 cells/frog), infection with chytrid had increased (>13,000 zoospore equivalents/frog) and frogs began to die. Frogs were randomly assigned to one of four exposure treatments: anti-chytrid skin bacteria, chytrid zoospores, bacteria followed by chytrid or water alone. Sample sizes were 7, 20, 20 and 7 respectively. Bacteria were isolated from four-toed salamanders Hemidactylium scutatum. Frogs were swabbed every two weeks for 120 days to test for chytrid and bacteria.

    Study and other actions tested
  4. A randomized, replicated, controlled study in 2010 in a laboratory in Virginia, USA (Muletz et al. 2012) found that infection rate of red-backed salamanders Plethodon cinereus with chytridiomycosis was significantly lower following exposure to chytrid-inhibiting skin bacteria in the soil. Infection rate was 40% with exposure to the bacteria Janthinobacterium lividum compared to 83% without. All salamanders exposed tested positive for the skin bacteria up until day 29, but by day 42 it was no longer detected. Salamanders infected with chytrid had significantly higher densities of bacteria than uninfected individuals. Fifteen randomly selected wild caught salamanders were exposed to skin bacteria in soil followed by chytrid in solution. Twelve were exposed to chytrid alone, six to skin bacteria in soil alone and five were unexposed controls. Each tank received 150 g of soil, which had 1.5 ml of skin bacteria suspension (2.9 x 107 colony-forming units/dry g soil) or pond water. Janthinobacterium lividum was isolated from the skin of four-toed salamanders Hemidactylium scutatum. Salamanders were tested for chytridiomycosis and the skin bacteria on days 8, 13, 20, 29 and 42.

    Study and other actions tested
  5. A randomized, replicated, controlled study in 2007 in a laboratory in Virginia, USA (Woodhams et al. 2012) found that survival of mountain yellow-legged frogs Rana muscosa naturally infected with chytridiomycosis was not increased by adding chytrid-inhibiting skin bacteria. Survival of frogs treated with bacteria was 50% compared to 39% for infected controls. Infection was not cleared in surviving frogs. However, weight loss was reduced with treatment (0.1 vs 0.4 g/week). Wild-caught frogs were randomly assigned to treatments. Twenty were bathed in water containing bacteria (Pedobacter cryoconitis) isolated from mountain yellow-legged frog and 13 control frogs in water alone for two hours. Frogs were swabbed and tested at seven and 13 days after treatment.

    A randomized, replicated, controlled study in 2010 in a laboratory in Switzerland (Woodhams, Geiger, Reinert, Rollins-Smith, Lam, Harris, Briggs, Vredenburg & Voyles 2012) found that survival of common toad Bufo bufo toadlets was not significantly increased by treatment with antimicrobial skin peptides before or after infection with chytridiomycosis, although treatment may have cured infection in some individuals. Survival of toads treated with peptides immediately before or eight days after infection was not significantly different from chytrid infected controls (12 vs 18%). However, none of the three treated toadlets that survived to 35 days were infected with chytridiomycosis, compared to all three of the untreated infected controls. Peptide treatment alone did not reduce survival compared to uninfected controls (64% vs 58%). Captive toadlets were randomly assigned to treatments. Seventeen were infected with chytridiomycosis alone. Seventeen were treated with skin peptides from edible frogsPelophylax esculentus (2 minute bath in 400 μg/ml peptide solution) immediately before infection and 17 on day eight following infection. Twenty four were uninfected controls, 12 of which were bathed with peptides. Swabs were taken and tested for the chytrid fungus on day 35.

    Study and other actions tested
Please cite as:

Smith, R.K., Meredith, H. & Sutherland, W.J. (2020) Amphibian Conservation. Pages 9-64 in: W.J. Sutherland, L.V. Dicks, S.O. Petrovan & R.K. Smith (eds) What Works in Conservation 2020. Open Book Publishers, Cambridge, UK.

Where has this evidence come from?

List of journals searched by synopsis

All the journals searched for all synopses

Amphibian Conservation

This Action forms part of the Action Synopsis:

Amphibian Conservation
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust