Create small ridges or ledges (1–50 mm) on intertidal artificial structures
-
Overall effectiveness category Awaiting assessment
-
Number of studies: 4
View assessment score
Hide assessment score
How is the evidence assessed?
-
Effectiveness
not assessed -
Certainty
not assessed -
Harms
not assessed
Study locations
Supporting evidence from individual studies
A replicated, randomized, controlled study in 2009–2010 on two intertidal seawalls on island coastlines in the Singapore Strait, Singapore (Loke & Todd 2016a; same experimental set-up as Loke & Todd 2016b) found that concrete settlement plates with small ridges supported similar macroalgae and invertebrate community composition, species richness and abundance to granite plates without ridges. After 13 months, macroalgae and invertebrate community composition (data reported as statistical model results), species richness and abundance were statistically similar on settlement plates with small ridges (6 species/plate; 97 individuals/plate) and without (3 species/plate, 178 individuals/plate). Settlement plates (200 × 200 mm) were moulded with and without small ridges. Plates with ridges were concrete with 12 serrated ridges/plate, with either regular (16 mm width, height and spacing) or variable (4–28 mm) arrangement. Plates without ridges were granite fragments set in cement. Granite may be considered an environmentally-sensitive material compared with concrete (see “Use environmentally-sensitive material on intertidal artificial structures”). Eight of each design were randomly arranged at both lowshore and highshore on each of two granite boulder seawalls in November–December 2009. Macroalgae on plates were counted from photographs and invertebrates in the laboratory after 13 months.
Study and other actions testedA replicated, randomized, controlled study in 2009–2010 on two intertidal seawalls on island coastlines in the Singapore Strait, Singapore (Loke & Todd 2016b; same experimental set-up as Loke & Todd 2016a) found that concrete settlement plates with small ridges, along with grooves, small protrusions and pits, supported higher macroalgae and invertebrate species richness than granite plates without added habitats, but that abundances and community composition varied depending on the habitat arrangement, shore level and site. After 13 months, macroalgae and invertebrate species richness was higher on settlement plates with ridges, grooves, protrusions and pits than without at lowshore (13–23 vs 6–10 species/plate) and highshore (5–9 vs 2–3/plate). Richness was higher on plates with variable habitats than regular ones at lowshore (22–23 vs 13–16/plate), but not highshore (6–9 vs 5–6/plate). Abundances were higher on plates with added habitats than without in four of eight comparisons (9–833 vs 3–208 individuals/plate), while community composition differed in three of four comparisons (data reported as statistical model results). In all other comparisons, results were similar (abundances: 104–1,957 vs 49–1,162/plate). It is not clear whether these effects were the direct result of creating ridges, grooves, protrusions or pits. However, richness was lower on plate quarters with ridges (6 species/plate) than pits (11/plate), but similar to quarters with protrusions and with grooves and ridges (both 8/plate). Abundances were similar for all habitat types (88–231 individuals/quarter). Settlement plates (400 × 400 mm) were moulded with and without small ridges, along with grooves, small protrusions and pits. Plates with added habitats were concrete. Each 200 × 200 mm quarter contained either 12 serrated ridges, four-to-five grooves and ridges, 36 protrusions or 36 pits. All habitats had either regular (16 mm width, depth/height and spacing) or variable (4–28 mm) arrangement. Plates without added habitats were granite fragments set in cement. Granite may be considered an environmentally-sensitive material compared with concrete (see “Use environmentally-sensitive material on intertidal artificial structures”). Eight of each design were randomly arranged at both lowshore and highshore on each of two granite boulder seawalls in November–December 2009. Macroalgae on plates were counted from photographs and invertebrates in the laboratory after 13 months.
Study and other actions testedA replicated, randomized, paired sites study in 2016–2017 on two intertidal seawalls in the Pearl River estuary, Hong Kong (Bradford et al. 2020) found that small ridges created on the seawalls supported lower macroalgae and invertebrate species richness than groove habitats created in between them, while species diversity varied depending on the ridge height. After 12 months, macroalgae and invertebrate species richness on settlement plates was similar on tall and short ridges (both 3–4 species/plate), and lower on both than in the grooves in between (8–9/plate). The same was true for species diversity, except that tall ridges supported similar diversity to grooves (data reported as Shannon index). Concrete settlement plates (250 × 250 mm) were moulded with five tall (height: 50 mm) or short (25 mm) vertical small ridges (length: 250 mm; width: 17–65 mm) between four grooves (length: 250 mm; width: 15–50 mm; depth: 50 or 25 mm). Five of each were randomly arranged at midshore on each of two vertical concrete seawalls in November 2016 (month/year: M. Perkins pers. comms.). Plates had textured surfaces. Macroalgae and invertebrates on ridges and in grooves were counted in the laboratory after 12 months. One plate with tall ridges was missing and no longer provided habitat.
Study and other actions testedA replicated study in 2015–2016 of two intertidal seawalls in Sydney Harbour estuary, Australia (Strain et al. 2020) found that small ledges created on the seawalls supported lower macroalgae and invertebrate species richness and lower mobile invertebrate and oyster Saccostrea glomerata abundances than groove habitats created in between them, but that macroalgae and other non-mobile invertebrate abundance, fish species richness and fish abundance were similar on ledges and in grooves. After 12 months, small ledges supported lower macroalgae and non-mobile invertebrate species richness (4 species/ledge) than the grooves in between (6/groove). The same was true for mobile invertebrates (4/ledge vs 6/groove), but not fishes (both 2/sample). Abundances were lower on ledges than in grooves for mobile invertebrates (1 individual/ledge vs 18/groove) and oysters (14 vs 56% cover), but were similar for macroalgae and other non-mobile invertebrates (36 vs 38% cover) and fishes (both 1 individual/sample). Concrete settlement plates (250 × 250 mm) were moulded with five horizontal small ledges (length: 250 mm; width: 17–65 mm; height: 50 mm) between four grooves (length: 250 mm; width: 15–50 mm; depth: 50 mm). Five plates were attached at midshore on each of two vertical sandstone seawalls in November 2015. Plates had textured surfaces. Macroalgae and invertebrates were counted on ledges and in grooves during low tide, from photographs and in the laboratory after 12 months. Fishes were counted from time-lapsed photographs during two high tides.
Study and other actions tested
Where has this evidence come from?
List of journals searched by synopsis
All the journals searched for all synopses
This Action forms part of the Action Synopsis:
Biodiversity of Marine Artificial StructuresBiodiversity of Marine Artificial Structures - Published 2021
Enhancing biodiversity of marine artificial structures synopsis