Translocate habitat-forming (biogenic) species - Translocate reef- or bed-forming molluscs
-
Overall effectiveness category Unknown effectiveness (limited evidence)
-
Number of studies: 2
View assessment score
Hide assessment score
How is the evidence assessed?
-
Effectiveness
-
Certainty
-
Harms
Study locations
Supporting evidence from individual studies
A replicated, site comparison study in 2010–2011 of 10 plots in Strangford Lough, Northern Ireland, UK (Fariñas-Franco et al. 2013 - same experimental set-up as Fariñas-Franco & Roberts 2014) found that over a year after translocating habitat-forming horse mussel Modiolus modiolus, invertebrate species richness and diversity were higher in plots with translocated mussels than those without, and similar to those of nearby natural reefs. Species richness and diversity were reported as indices. All plots had different community composition from one another (community data presented as graphical analyses). The effect of translocation on invertebrate abundance was unclearly reported (see original paper). In 2010, divers translocated live adult horse mussels from nearby natural mussel patches within the Lough to four plots (1,000 mussels/plot). After 12 months, two quadrats (0.25 × 0.25 m) were deployed at each plot with translocated mussels and at four adjacent plots without translocated mussels. Sediment and shell were sampled in each quadrat to 10 cm depth. Organisms > 1 mm were identified and recorded as either counts or presence/absence. Natural horse mussel communities from two nearby horse mussel reefs within the lough were sampled in December 2010 using the same sampling methodology.
Study and other actions testedA replicated, controlled study in 2010–2011 of 12 plots in Strangford Lough, Northern Ireland, UK (Fariñas-Franco & Roberts 2014 – same experimental set-up as Fariñas-Franco et al. 2013) found that over a year after translocating habitat-forming horse mussel Modiolus modiolus, overall invertebrate species richness and diversity increased, and invertebrate community composition changed, but with no differences between mussels translocated onto scallop shells or onto natural seabed. In plots where scallop shells had been added, either as elevated or flattened piles, and in plots where no shells were added, species richness and diversity (presented as indices) increased following translocation of horse mussels, but without differences between treatments. Community composition changed over time, but after a year was similar across treatments (data presented as graphical analyses). In addition, total abundance of invertebrates increased for the first six months but decreased between six and 12 months in all treatments. Over a year, abundance was higher in plots with elevated scallop shells (5–2,350 individuals) than in plots with flattened shells (2–1,370 individuals) or without shells (3–780 individuals). In November 2009–March 2010, sixteen tonnes of king scallop Pecten maximus shells were deployed in bags at four sites (17–19 m depth) to recreate suitable habitat for horse mussel reefs. Each site was divided into an elevated plot (8 m2; shell rising 1 m above seabed) and a flattened plot (4 m2; 0.5 m above seabed). Divers translocated live adult horse mussels from nearby natural mussel patches within the Lough into each plot and at four adjacent natural seabed plots without scallop shells (500 mussels/plot). One, six and 12 months after translocation, animals were identified and counted from one 0.5 × 0.5 m quadrat/plot. Strangford Lough is a marine protected area where fishing is prohibited.
Study and other actions tested
Where has this evidence come from?
List of journals searched by synopsis
All the journals searched for all synopses
This Action forms part of the Action Synopsis:
Subtidal Benthic Invertebrate Conservation